FLAME

Overview

Simon Coakley
July 5, 2011

1 Introduction

The FLAME framework is an enabling tool to create agent-based models that can be
run on high performance computers (HPCs). Models are created based upon a model of
computation called (extended finite) state machines. By defining agent-based models in
this way the FLAME framework can automatically generate simulation programs that can
run models efficiently on HPCs.

2 Model Design

The philosophy of FLAME is to specify an agent-based model as you would specify software
behaviour, as ultimately the execution of the model will be in software. The behaviour
model is based upon state machines which are composed of a number of states with tran-
sition functions between those states. There is a single start state and by traversing states
using the transition functions the machine executes the functions until it reaches an end
state. This happens to each agent/machine as one time step or iteration is completed.
Figure 7?7 shows a model consisting of two agents each with two functions run one after
the other. A time step or iteration of the model is when each agent goes from their start
state to an end state.

agent a agent b
iteration
start
function 1 function 1
function 2 function 2
iteration
end

Figure 1: An iteration with 2 agents with 2 functions each

Each agent has a memory that holds variables. Transition functions can read and
write to variables in the agent’s memory. Communication between agents is achieved
via messages. Transition functions can also read incoming messages and write outgoing
messages.

Because FLAME can execute agent models in parallel and on different processors the
coordination of agent function execution depends on the communication between agents.
Communication is synchronous to the agent model which means it happens at the same
time. For agents this means that if an agent function receives a certain type of message,
it cannot be executed until all the messages of that type have been sent and that they are
all ready to be read. This means that no agent is given priority over reading any input
and all agents have access to the same messages at the same time. This also means that
the order that agents are executed does not matter.

Because agents can be executed anywhere on a super computer cluster FLAME uses a
broadcast communication method. This means that agents cannot directly send messages

to another agent. Instead the receiving agent must filter messages that it only needs to

read.

Figure 77 shows an agent machine with a start state, an end state and one transition
function from one to the other which has access to the agent memory and recieves input

messages and produces output messages.

memory

function

input

read éﬁii.’ write

read

write

output

Figure 2: An agent as a computational machine

Describing an agent-based model would thus include the following individual stages for
creating a model:

Identifying the agents and their functions

Identify the states which impose some order of function execution

Identify the memory as the set of variables that are accessed by functions
(including possible conditions on variables for the functions to occur)

Identify the input messages and output messages of each function
(including possible filters on inputs)

Once a model has been defined using these criteria the implementation of the agent
functions can be written as source code in the C programming language. FLAME can then
use the model description to create a simulation program that handles agent execution and
communication in parallel.

2.1 Swarm Example

For example a simple swarm (flocking) model would include an agent for a bird. Because
agents can only communicate via messages in FLAME each bird needs to have a function
that sends out a message with their current location. A second function is needed to read
the messages and update the birds velocity depending on the other birds locations. A third
function then updates the birds location using the birds new velocity. The three functions
required of the bird agent are then:

e signal — send out current position message
e observe — read position messages from other agents and update velocity

e respond — update position using the current velocity

The functions occur in this order so states are included to impose this order, see Figure
?7?. As a requirement for automatic parallel execution agents can only enter particular
states once during an iteration, i.e. there cannot be any loops back to a state already
entered. This is so that parallel processes can easily stay synchronised, adding to the
efficiently of a simulation. There can only be one start state per agent, but there can be
many possible end states.

signa —@—o observe —»@—» respond

Figure 3: Swarm model including states

Functions can also have conditions. For instance, in the swarm model, a response
function for flying and a response function when resting on the ground. The condition on
the flying response function would be that the z-axis position of the agent be greater than
zero while the resting response function condition would be when the z-axis position was
zero, see Figure 77.

z>0 flying
signal ——@—» observe 4’%

resting

Figure 4: Swarm model including function conditions

The messages required for communication between agents are a signal message, which
is output from ‘signal’ and input to ‘observe’, see Figure ??. This message would include
the position of the agent that sent it, see Table ?7. A feature of swarm models and most
agent-based models is that there is generally a limit on incoming communication. In the
swarm case this is the perceived distance of sight that an agent can view the location of
other agents. This feature can be added to the model as a filter on inputs to a function,
where the filter is a formula involving the position contained in the message (the position
of the sending agent) and the receiving agent position.

’ Type H Name H Description ‘

double px x-axis position
double Py y-axis position
double pz z-axis position

Table 1: Signal Message

flying

z>0

restini
signa 9

Figure 5: Swarm model including messages

Functions that take a message type as input are only executed once all functions that
output the same message type have finished. One iteration is taken as a standalone run
of a simulation, so once all the functions that have a message type as an input have been
executed, the messages are deleted as they are no longer required. Messages cannot be
sent between iterations.

’ Type H Name H Description

double px position in x-axis
double Py position in y-axis
double pz position in z-axis
double VX velocity in x-axis
double vy velocity in y-axis
double \ velocity in z-axis

Table 2: Swarm Agent Memory

Finally the memory required by the agent functions include the position of the agent,
and its velocity, as shown in Table 77.
The swarm model can also be represented as a transition table, see Table 77, where:

Current State — is the state the agent is currently in.

Input — is any inputs into the transition function.

e M, — are any preconditions of the memory on the transition.

e Function — is the function name.
o M, — is any change in the agent memory.
e Output — is any outputs from the transition.
e Next State — is the next state that is entered by the agent.
’ Current State ‘ Input ‘ Myye H Function H Most ‘ Output ‘ Next State ‘
start signal signal 1
1 signal observe || (velocity updated)
2 x>0 flying || (position updated) end
2 r == resting || (position updated) end

Table 3: Swarm Agent Transition Table

