

Simple SIR Infection Model in FLAME

David Worth, Chris Greenough, Shawn Chin

Software Engineering Group Computational Science & Engineering Department Rutherford Appleton Laboratory

david.worth@stfc.ac.uk, christopher.greenough@stfc.ac.uk, shawn.chin@stfc.ac.uk

Background

- □ Transfer NetLogo infection model to FLAME
- Agents move randomly on torroidal domain
- One of 3 states
 - Susceptible
 - □ Infected

- □ Removed (immune)
- Birth and death included
- □ Spread controlled by
 - □ Infectiousness, chance of recovery, duration of virus

One Iteration

□ Agent moves

- □ 1 unit in direction ±100° of current heading
- Infected agents post location
- Susceptible agents read locations
 - □ Look for messages within their 1x1 patch
 - □ Calculate chance of becoming infected
 - □ Based on infectiousness
- □ Infected agents calculate chance of recovery
 - □ Based on duration of virus & chance of recovery
- □ Non-sick agents have chance of reproducing
 - **Up to carrying capacity**
 - □ Based on agent lifespan & average number of offspring

Implementation

One Person agent

- □ Agent identification: Id
- Position: x, y (double) and heading (double)
- □ State flags: is_sick, is_immune
- Counters: sick_count (how long infected), age (how old)
- One infected message
 - □ Agent id: Id
 - Desition: x, y (double)

Functions

- **Given** get_older (Start \Rightarrow 1)
- \Box move (1 \Rightarrow 2) Output infected message
- □ infect $(2 \Rightarrow 3)$ Input infected message
- **D** recover $(3 \Rightarrow 4)$ Depends on infect function
- \Box Reproduce (4 \Rightarrow End) Depends on recover function

Agent Creation

- □ Required by **reproduce** function
- □ Need unique ids
- □ New agent created from existing one so use existing id as basis
 - □ Add on global number of agents * current iteration number
 - Increment global number of agents
- □ OK because agents only have one child per iteration
- □ Not complete solution
 - □ global number of agents changed by other functions

Environment

□ Fixed values defining: reproduction, disease, domain

- Lifespan 100
- □ Average offspring 4
- □ Carrying capacity scaled with initial number of agents
- □ Infectiousness 65%
- □ Chance of recovery 50%
- Duration of disease 20
- Domain height scaled with initial number of agents
- Domain width scaled with initial number of agents

Input Data

□ Initially same as NetLogo model

- □ 150 agents
- □ 10 infected (choose first 10)
- □ 34x34 domain
- □ Carrying capacity = 750
- □ Position and heading random uniform distribution
- Other values on previous slide

Generated with Python script

- ./init_start_state.py <width> <height> <agent_count>
- □ Scale domain with agent count to keep same density
- □ Change carrying capacity in script!!

Verification

□ Check with NetLogo

Serial run 15000 agents

FLAME Serial Run

Parallel Runs

- □ Carrying capacity of domain is global data
 - □ Split capacity equally between nodes is only choice
 - □ Try to keep agent number same on all nodes therefore...
 - Do round-robin agent partitioning
 - Does give "better" results

Pretty Pictures

- □ Run on HECToR
- **5**00 cores
- □ 150000 initial agents
- □ 750000 carrying capacity

Iteration 10

Iteration 100

Iteration 200

Iteration 300

Timing data

□ HECToR

- □ 15,000 agents
- □ Completely unreliable!

Conclusions

□ Improvements to FLAME

- Global variables
 - □ Update frequency every change, end of iteration, programmatic
 - □ Partition of values among nodes e.g. carrying capacity
- Geometric partitioning better for infection model if GVs available
 Halo filters
- □ Agent migration if using geometric partitioning

□ NetLogo = bad model

Missing potential infection because of patches

