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EURACE is a major European attempt to construct an agent-based model of the European
economy with a very large population of autonomous, purposive agents interacting in a
complicated economic environment. To create it, major advances are needed, in particular
in terms of economic modeling and software engineering. In this paper, we describe the
general structure of the economic model developed for EURACE and present the Flexible
Large-scale Agent Modelling Environment (FLAME) that will be used to describe the agents
and run the model on massively parallel supercomputers. Illustrative simulations with a
simplified model based on EURACE’s labor market module are presented.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Research in economics has traditionally been and, to a large degree, still is based on the development and analysis of
highly stylized, analytically tractable models. However, thanks to recent developments in computer technology and numer-
ical methods, large-scale simulations are increasingly providing a powerful and attractive new approach for understanding
the characteristics of economic systems and to derive economic policy recommendations. In particular, by explicitly mod-
eling the decentralized interaction of heterogeneous economic agents in systems like markets or organizations, agent-based
computational economics (ACE) attempts to transcend the numerous restrictive assumptions underlying most main-stream
analytical models (e.g. homogeneity of individuals, perfect rationality, rational expectations, perfect ex ante coordination
in an equilibrium).

The idea is simple enough. To build a ACE model, one creates an artificial landscape, possibly capturing real geographical
features. This landscape is covered with factories, shops, schools, transportation and communication networks, natural re-
sources, etc. It is populated with purposive agents that move around the landscape, communicate with other agents, work,
consume, learn, invest, speculate on financial markets, that is, that potentially conduct all human activities of interest. The
modeler specifies the landscape, the rules governing the landscape dynamics, the interaction among agents, between agents
and the environment, the agents’ behavior, and sets the initial conditions. He then lets the model evolve on its own, keeping
track of the system output (i.e. chiefly of the individual actions and states) at any desired level of detail. Thus, the collected
data can be used for the usual explanation/prediction/policy-making purposes.

Models of this kind have been developed in many areas of economics. Among others, they have been used to study (i) the
emergence of trading behavior on goods-markets [1,2] and on financial markets [3,4], (ii) bidding behavior in auctions [5,6],
(iii) numerous issues concerning innovation and industry evolution [7], or (iv) the emergence of cooperative behavior in
. All rights reserved.
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economic systems [8,9]. For an overview of main developments in ACE research over the last 15 years see Ref. [10]. The
importance of the field is documented by numerous recent special issues in high-level journals [11–14] as well as the fact
that an entire volume of the highly influential North-Holland Handbook series is dedicated to agent-based computational
economics [15].

Most of the existing models, however, cover only a single industry, one restricted geographical area, or a unique market,
and involve relatively small populations of agents. In contrast, the research project EURACE we are presenting in this paper
aims at creating an agent-based model of the whole European Union, to be populated with a vast amount of fairly sophis-
ticated agents on a complex landscape. By its scope and complexity, the effort is unsurpassed and needs to cover much terra
incognita, among others concerning the conceptual and computational architecture of the model, its numerical implemen-
tation, its validation, and the exploitation of the simulation results. In particular, running such a large model will necessitate
using massively parallel computing on large supercomputers, using pioneering software.

The 3-year EURACE Project started in September 2006. It includes economists and computer scientists from eight research
centers in Italy, France, Germany, the United Kingdom, and Turkey, as well as the 2001 Nobel laureate in economics, Joseph
Stiglitz (Columbia University). More institutional and scientific details can be found on the project’s web page:
www.eurace.org.

This paper documents the state of EURACE with regard to the general structure of the economic model and the basic com-
putational implementation. It illustrates the current work with an exploratory numerical investigation conducted with a
grossly simplified model based on EURACE’s labor market module. Important aspects such as the calibration, validation,
and exploitation of the model are not discussed.

The paper is organized as follows. In Section 2 we give an overview of the economic model that will be used within EUR-
ACE. Section 3 describes the computational framework FLAME in which the model will be implemented. Section 4 provides
some simulation results for the labor market, and Section 5 concludes.
2. The economic model

The model includes various artificial markets for real commodities (mainly, consumption goods, investment goods and
labor) and markets for financial assets (such as debt securities, bonds and stocks). The artificial markets are first developed
and studied separately, and integrated into a unified framework at a later stage.

2.1. Time and space

The final model aims at representing, albeit in a very simplified and stylized way, the EU-27. To that effect, we intend
to link GIS data to economic data available from Eurostat at the so-called NUTS-2 regions level. NUTS are the geographical
subdivision of the EU that Eurostat (the statistical office of the EU) uses when collecting its statistics. There are 268 NUTS-
2 regions in the EU-27. This will allow us to distribute the firms, households, shopping centers, and other relevant eco-
nomic elements over the EU-27 territory in a way that roughly reproduces reality. The rest-of-the-world is modeled as
a separate, highly aggregated entity. It provides important (semi)exogenous inputs to the EU-27 model, such as energy
prices.

The temporal resolution of the model is the business day. All economic activities can, but does not necessarily, take place
on a daily basis. The various markets function at different time-scales, with buying and selling on the stock market taking
place at shorter time intervals than, for example, the interactions on the job market.

Most actions are event-driven: an agent will take this or that action as a function of its current state and of the past his-
tory of all inputs received from its physical and socio-economic environment. However, we also allow for calender-driven
activities.

In addition to the geographical structure, the agents are linked by a number of socio-economic networks reflecting, for
example, buyers-sellers, firms-workers, or banks-firms links. With agents interacting in parallel on different markets multi-
ple layers of networks will be operational simultaneously. The networks are evolving over time, driven by the (dis)satisfac-
tion of the agents with their current links, their exploration of alternative links, the emergence of new needs, and similar
factors.

2.2. Agents and markets

There are three types of agents with learning capabilities: households (up to �107), firms (up to �105 producing con-
sumption goods, and up to �102 producing investment goods), and banks (�102). Other agents, that is, national governments
and the single central bank, follow simple, predefined decision rules, thus allowing a comparative analysis of the economic
behavior under alternative policy regimes. Finally, there are a number of institutional agents whose main function is to gath-
er and distribute information, to compute aggregate indices and economic indicators and to transmit these to selected
groups of agents if these agents request the information. For example, we envision incorporating a statistical office mimick-
ing Eurostat, and a market research entity that investigates the profitability of firms in local regional markets and transmits
this data to firms who want to enter into a local market.

http://www.eurace.org


Fig. 1. Interactions between the investment goods producers and the consumption goods producers on the market for capital goods. Arrows show the
messages between agents.
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The model considers five types of markets: consumption goods, investment goods, labor, credit, and financial assets. With
the exception of the investment goods market and the asset market, the markets are local. There is, for example, a local labor
market in each NUTS-2 region. The local markets are interrelated, but typically through indirect or weak links (in the case of
the labor markets, the main link is labor mobility).

The market for consumption goods is a decentralized market, with local interaction between the firms and consumers.
We assume that the firms send their merchandise to a given set of local shopping malls. All buying and selling occurs at these
malls. Firms chose the outlet malls on the basis of expected local demand and profit opportunities. They also take into ac-
count the costs involved in servicing a particular mall, such as the transportation costs, the leases for the stores in the mall,
and the inventory management costs.

The labor market is also a decentralized market. A local search-and-matching process is used to represent the interaction
between firms and workers. The firms post vacancies, including the minimum skill level required for the posted job. The po-
tential employees apply to vacancies that have been posted by firms in their local neighborhood. Unemployed workers who
do not succeed in finding a job locally can migrate to a different region.

The market for investment goods is a centralized market. There are multiple investment goods producers, each producing
a different, vertically differentiated, technology. The investment goods producers invest in R&D to technologically improve
the investment goods, leading to oligopolistic competition among them. The producers of consumption goods can invest in
one of these technologies to produce a variety of differentiated consumption goods.

On the credit market, the firms interact with banks to obtain loans. The credit market is a decentralized market, with
competition between banks setting different interest rates for the business loans. The banks apply credit standards to the
firms that apply for the loans. Thus, the firms can be credit constrained.
Fig. 2. Interactions between the consumption goods producers and the consumers on the goods market.
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Finally, the financial asset market links the real side with the financial side. Firms issue equity (common stocks and cor-
porate bonds) to finance investments and production. The households invest in asset portfolios, and the government sells
government bonds to finance its budget deficit. The financial market thus consists of a market for corporate and government
bonds and a market for firm stocks. The linkage between the financial side and the real side of the economy is provided by
the financial policy of the firms on internal and external financing, that is among others, by the dividend, the debt repay-
ment, and the investment decisions [16].

Figs. 1 and 2 show the interactions on the markets for investment goods and consumption goods between the producers
of investment goods (new technologies), producers of consumption goods, and consumers.

3. Computational framework

Economic agent-based systems are intrinsically massively parallel computational systems with very large populations of
sophisticated agents – meaning that up to millions of agents perform complicated local computations and exchange very
large amounts of data with other agents. Thus, it appears natural and is indeed necessary to implement them on parallel
supercomputers. Very few of the existing computational approaches, however, are truly adapted to the needs of such mod-
els. In particular, they rarely take into account the fact that the agents have precise positions on physical and conceptual
networks – they are located in space and also linked in a precise manner through trade, contracts, friendship, and other so-
cio-economic relationships. An exception to this is the FLAME framework, which will now be briefly presented.

3.1. FLAME

EURACE will be implemented using the Flexible Large-scale Agent Modelling Environment (FLAME) developed by Simon
Coakley, Mike Holcombe, and others at the University of Sheffield (see http://www.flame.ac.uk for a more complete presenta-
tion and references). FLAME’s origins lie in an agent-based project on the simulation of biological cells grown under different
environmental conditions. A key aim of the project was to write specifications for a formal framework allowing modelers to eas-
ily create, exchange, include and couple models that have been written in a high-level modelling language. Other key aims were
the development of parallelization techniques, the distribution of agents over many processors, and the inclusion of testing
methods to verify developed models. All these elements are vital to agent-based models in general and to EURACE in particular.

FLAME is based on so-called finite-state machines, that is, on automata described by a finite number of states, transitions
between those states, and actions, that are heavily used in computational sciences [17]. The approach taken in FLAME is to
regard each individual agent as a X-Machine and to specify a communication structure such that the different agents can
exchange messages with each other. In other words, individual X-Machines are given the ability to communicate by
exchanging messages. Moreover, they are generalized by providing them with an internal memory, leading to a so-called
stream X-Machine design. The framework has been adapted to enable it to run on a parallel computing platform by Coakley
[18]. It has been previously used to study the behavior of a number of biological systems – at the molecular, cellular, tissue
and social levels – and has been successful in uncovering a number of new biological properties that have been confirmed
experimentally by Coakley et al. [19].

In the following section, we present the computational model of stream X-Machines in more detail.

3.2. Stream X-Machines

Stream X-Machines [20] are a variant of the X-Machine concept that was introduced by Eilenberg [21]. Like a finite state
machine, an X-Machine consists of a finite set of states S, a set of transition functions F, and a language X used by the system
to read and write information. However, an X-Machine also has an internal memory that influences the operation of the ma-
chine. The internal functions take as inputs internal memory variables and messages that are sent by other X-Machines. The
output of an internal function is a modified value of an internal memory variable and/or output messages to other
X-Machines.

Stream X-Machines form a very general computational framework. For example, it is a simple matter to interpret Turing
machines, the standard model for digital computation, as stream X-Machines. They allow us to treat in very general terms
both the language and the computing of functions over that language, and thus make it possible to go well beyond the tra-
ditional limits of computational theory. In particular, the framework has proved itself most appropriate for describing and
running large-scale agent-based computational models. Formally, a stream X-Machine is defined as follows.

Definition 3.1. A stream X-Machine is a 6-tuple
X ¼ ðM;m0;R;C; F;xÞ ð1Þ
consisting of the following:

� a finite set of memory states M,
� a start state m0 (also called the initial state) which is an element of M,
� a finite set of symbols called the input alphabet (R),

http://www.flame.ac.uk


Fig. 3. Example definition of an X-Machine. A simple machine is defined, with internal memory variables id and position variables (x, y). The machine has
two functions, f1 and f2 that have an internal function dependency: function f1 needs to run before f2. An input message msg1 is needed as input to f1. The
X-Machine may send a message msg2 to communicate its current position (x, y).
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� a finite set of symbols called the output alphabet (C),
� a state-transition function F: M � R ? M,
� an output function x: M � R ? C.

The state of a stream X-Machine is entirely determined by its internal memory. Hence, the finite set of states S coincides
with the set of internal memory states M of the X-Machine. The current memory state m 2M describes the machine’s current
information set. The language X is specified by the alphabets R and C that are symbol sets to encode input and output strings
(messages). The state-transition function F of a stream X-Machine takes as inputs the current internal memory state and a
(list of) input message(s); this determines the next memory state. The output function x is also a function of the current
memory state and input messages, but has as its co-domain a (list of) output message(s) to other X-Machines.

Fig. 3 shows an example definition of an X-Machine, defining internal memory variables id and position variables (x, y).
The machine has two functions, f1 and f2, and it can send out a message msg2 containing its current position.

Benchmark tests of the FLAME framework have been performed on a number of parallel computers, including: SCARF1,
HAPU2, NW-GRID3, and HPCx4. The test model consisted of 106 simple agents who only communicate their (x,y) position.
The results are presented in Fig. 4, which shows how the ‘time per iteration’ decreases when the number of processors is
increased.

In the following, the terms ‘(stream) X-Machine’ and ‘agent’ are used equivalently.

3.3. Messages

As previously mentioned, FLAME regards each individual agent as an X-Machine and specifies a communication structure
such that the agents can exchange messages with each other. All interdependencies between the agents’ activities run
through the messages, that is, there is no direct link between the internal functions of two separate agents. In this way,
the content of the internal memory of each agent is shielded from outside access, so that all information is in a sense private
information. An agent’s behavior only depends on its internal memory state. The internal memory can for example include
the agent’s location or any other internal information that might change over time and affect the agent’s behavior.

Exchanging messages, however, can be very costly on a parallel supercomputer. Schematically, such a machine consists of
individual computers (the so-called computing nodes), that are linked by a high-speed communication network. The speed
of communication among nodes is much smaller than the speed of communication within a node. Furthermore, a node may
have to wait for a message from another node before being able to continue with its computations. Thus, running a large-
scale agent-based computational model efficiently implies favoring intra-node computation over inter-node message
exchanges.
1 http://hpcsg.esc.rl.ac.uk/scarf/index.html
2 http://request.dl.ac.uk/hosts/hapu.live
3 http://request.dl.ac.uk/hosts/NW_GRID.live
4 http://www.hpcx.ac.uk

http://hpcsg.esc.rl.ac.uk/scarf/index.html
http://request.dl.ac.uk/hosts/hapu.live
http://request.dl.ac.uk/hosts/NW_GRID.live
http://www.hpcx.ac.uk
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To achieve that goal, we exploit the fact that in an agent-based model most information provided by one agent is sent to a
relatively small group of neighboring agents (where ‘neighbor’ is meant in the functional rather than a geographical sense:
two agents can be neighbors in a social network even if they reside on different continents). Thus, we split the landscape into
different regions consisting of clusters of neighboring agents. The computations for each region are dealt with by a dedicated
node, that is, they are carried out most efficiently. Migration of agents across the boundary of a region is dealt with by mov-
ing the agent’s memory from one node to another.

The multi-agent model on a parallel machine can then be visualized as consisting of a population of agents inhabiting
different neighborhoods (i.e. nodes) and who occasionally change neighborhood. Each neighborhood has its own message
list that the agents can use to communicate making also communication within the neighborhood most efficient. When
an agent sends a message it does not send the message directly to another agent, but sends it to the local message list.

A message received on a list is either read or ignored by the individual agent, as a function of the agent’s internal rules.
These rules can reflect the fact that, in reality, certain agents may not have access to certain types of messages. Private com-
munication between two agents is made possible by including in a given message the id of the recipient and specifying inter-
nal rules that forbid any other agent from reading the message.

If an agent associated to a message list needs to send a message to an agent associated to a different message list, then the
message is sent from one message list to the other. Such communication across message lists can be computationally costly,
but the cost can be minimized by a proper distribution of the agent population across the different nodes in the computa-
tional cluster.5

Sending messages only to the list of one’s own neighborhood is too restrictive in many cases. If an agent is close to the
edge of its neighborhood and may affect an agent in an adjacent neighborhood, a copy of the message is also sent to the list of
the adjacent neighborhood.

3.4. The definition of economic X-agents

In an economic agent-based implementation, the following items have to be made precise for every agent within the
above general structure:

� the markets on which the agent can be active;
� the behavioral rules followed by the agent (these are captured by the internal functions f of the X-Machine);
5 The protocol that is used to send messages is MPI. The system of local message boards can be likened to an e-mail system (i.e. the simple mail transfer
protocol, SMTP), which operates by first sending all local e-mails to the local mail server. If the recipient’s domain name, that is, that part of the e-mail address
to the right of the @-sign, is the same as that of the sender, the message is handled internally. If not, the e-mail is sent to a router, which then relays the message
to a different local mail server on the recipients domain.
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� the allowable actions that the agent can perform and the decisions that the agent needs to make on each market (these are
the changes to the internal memory variables, as a result of the application of the internal functions f);

� the messages that the agent can receive from other agents (these are the input messages r 2 R of the X-Machine);
� the messages that the agent can send to the other agents (these are the output messages c 2 C of the X-Machine).

3.4.1. Roles and contexts
We shall view a market as providing a context for agents to act in. Agents always act within contexts, but can have dif-

ferent roles in the same or different contexts. Accordingly,

� We define the relevant list of agents.
� For each agent, we define the contexts in which this agent is supposed to act, and its respective role(s) in each context.
� For each role in a given context, we define the functions that this role should perform.

Such a hierarchy allows us to separate the functions of a single agent into several subclasses that are relevant for each
distinct market context, without breaking the possible dependencies that may exist within an agent between the functions
associated to different roles. All the functions of an agent can depend on all other functions of this agent, irrespective of the
roles. Fig. 5 shows an example of the agent-role hierarchy for a household, and two types of firm agents: the consumption
goods producers and the investment goods producers in the EURACE model.

Another advantage of our approach is that it is possible to use a similar hierarchical structure for the messages. All mes-
sages that belong to a certain market context can be collected into a subclass of messages. Since messages do not belong to
an agent but are defined outside of the agent scope, the message dependencies of the functions of all agent types that are
active in the same market context can then be clearly delineated per context. For example, all the agents that are active
on the labor market have a common subset of messages to be sent and received.

3.4.2. Agent activation regimes in EURACE
Since the FLAME framework uses parallel computing, all agent activities within the EURACE simulator will in principle be

based on a fully asynchronous, parallel activation regime. Indeed, almost all activations in the EURACE model are event-
based: the activities of an individual agent depend solely on the messages it has received and the messages it is holding
Household
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Fig. 5. Diagram of agent-role hierarchies for household agents, and two types of firm agents: consumption good producers and investment good producers.
Each agent class is subdivided into different subclasses, reflecting the roles of the agents in different market contexts. LM: labor market, CM: credit market,
FM: financial market, CGM: consumption goods market, IGM: investment goods market.
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in its internal memory. That is, all the information transfer between the agents occurs through the use of messages. The mes-
sages are stored in the memory of the agent as internal variables.

If an activity of agent A requires information that is encapsulated in a message send by agent B, then agent A has to wait
until agent B sends the message. Agent A has to retrieve and read this message before he or she can start the activity. The
internal memory variables are private. It is not possible for agent A to obtain the data from agent B directly by polling B’s
internal memory.

Nonetheless, some activities are naturally not event-based but clock-based. Then, a central clock is being used to notify
agents of the passing of time in the model, so that they can take it into account in their decision-making process. In the X-
Machine framework this entails that a centralized message is broadcast to all agents, telling them that a certain date has
been reached.

If agents have multiple roles (i.e. a household agent is a worker, a trader, and an investor) then one must define a mean-
ingful procedure to activate these multiple roles within the single agent. The activation regime now becomes an intra-agent
problem. After an agent is activated by the large-scale activation regime it has to determine what action to take next. To do
so, the agent may use a random activation regime to chose between the different activities. Alternatively, all the agent’s
internal functions may get activated, implying that all the different roles of the agent are active at the same time. In an eco-
nomic context, this would mean that the agent is active on different markets simultaneously. Alternatively, it is possible that
certain market activities need to be completed before another market activity can take place. That is, there is an internal
function dependency between the different roles of the same agent.

A second type of dependency that occurs in FLAME is the so called communication dependency. It occurs when a function
of one agent depends on an input message sent by a different agent. All agent interactions in FLAME run through such com-
munication dependencies, using the messages to transfer the information.

In the case of EURACE the agents are active on different markets (see Fig. 5) and at different time-scales, thereby sepa-
rating their multi-role activities in time without the need for an internal time schedule to activate the different roles. In gen-
eral, the roles are associated to different market contexts. The order of activation of the agents’ roles in their respective
market contexts should be determined by the internal function dependencies. For example, the only roles that are active
in the context of the labor market are the ‘worker role’ of the household and the ‘employer role’ of the firm. The other roles
(such as the ‘consumer role’ and the ‘producer role’) do not belong to the same market context. Thus, different roles of the
same agent can in principle be active on different markets at the same time, acting in parallel. The interdependencies be-
tween the roles are taken into account by specifying the internal function dependencies inside each agent.

4. Exploratory simulation results: the labor market

This section presents some exploratory simulations conducted with a simplified model based on EURACE’s labor market
module. For a detailed description of the complete model see Ref. [22].

The simplified model is composed of a capital goods sector, of a consumption goods sector with heterogenous firms, and
of a labor market with heterogenous workers. The capital goods sector, however, is not agent-based, but is modeled as a pas-
sive entity whose behavior is determined by simple rules. In a nutshell, it provides an infinite supply of capital goods at exog-
enously given prices. The productivity of the capital goods increase over time according to a stochastic process. The amounts
paid for the capital goods are channeled back into the economy.

Together with labor, the capital goods are used in the consumption goods sector to produce consumption goods. These
goods are sold to the households. The firms follow plausible, to the largest possible extend empirically grounded rules for
investment, production, stocking, pricing, hiring and firing, dividend payment and/or debt making. They can obtain unlimited
loans at an exogenous interest rate. Likewise, the households follow plausible rules for saving, consuming different types of
products, looking for a better job while employed or trying to find a job while unemployed. The contexts in which the diverse
active agents are acting, their roles in the different contexts, and the main messages they send are summarized in Table 1.

The workers are characterized by (1) a general skill level and (2) specific skills. The specific skills are acquired on the job to
fully exploit the technological potential of the capital used in the production process. The general skill level is obtained through
schooling. The higher the worker’s general skill level, the faster it acquires the specific skills associated with a given job.

Broadly speaking, the main purpose of the model is to investigate how the skill distribution in the economy influences the
speed of technological change, the employment and wage dynamics, and the growth rate. Spatial aspects play a crucial role
in that context, for two main reasons: (1) in most industrialized countries there are strong regional differences in the skill
Table 1
Active agents, contexts, roles, and messages in the model

Agent Context Role Messages

Household Consumption goods market Buyer Units demanded
Labor market Worker Application, accept/reject job

Firm Investment goods market Buyer Units demanded
Consumption goods market Seller Price, quality
Labor market Employer Vacancy, job offer
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distribution; and (2) geographical proximity has a crucial impact on the intensity of technological spillovers among firms,
and thus, on the dynamics of technological progress.

To capture spatial effects, the economy is divided in several regions. Consumption occurs locally within each of these re-
gions. Households and firms are distributed between the regions. Workers can apply for jobs in any region, but working out-
side their own region of residence is associated with commuting costs that have to be subtracted from the wage. Firms prefer
to hire employees with high general skills. In case several applicants have identical general skill levels the one with the high-
est specific skills is selected.

4.1. Labor market search-and-matching algorithm

A firm that decides to expand production posts vacancies and wage offers on the labor market to hire the additional labor
needed. The firms post vacancies at most once a month. However, the labor market opens and is active everyday, since the
firms are posting their vacancies asynchronously and the job seekers search for vacancies on a daily basis. The job seekers
consist of the unemployed and of a randomly determined fraction / of employed workers who do an on-the-job search. A job
seeker accepts a job only if the corresponding wage is higher than her current reservation wage. The reservation wage is a
function of the worker’s past wages. It decreases over time as a worker remains unemployed.

The matching algorithm between vacancies and job seekers can be summarized as follows:

(1) Firms determine once a month their planned production output and accordingly may decide to post vacancies (indi-
cating the wage offered and the required skills) or to fire workers.

(2) Households look at the vacancies posted by all firms in their neighborhood, rank the vacancies according to the wages
offered, and then send out job applications for those jobs which offer a wage at least equal to their reservation wage.

(3) Firms receive the job applications, rank them according to the workers’ skill-levels, and send out job offers.
(4) Households receive job offers (possibly from multiple firms). They accept at most one job, and send rejection or accep-

tance messages to all firms they applied to under 2. A worker that remains unemployed lowers her reservation wage.
(5) Firms receive the acceptance/rejection messages, and update their wage offer depending on how many vacancies are

left unfilled.

The search-and-matching algorithm is illustrated in Fig. 6. It shows that the algorithm can be split up into four sequences
of message sending/receiving. These steps are so called communication layers. They are useful to parallelize the code, since
each layer can be executed independently and asynchronously from any of the other layers.

4.2. Simulation results

In the simulation presented here there are two regions, with 5 firms and 200 households in each region. There are five
general skill levels, 1 being the lowest and 5 the highest. The general skill levels are distributed uniformly among workers.
The stochastic technology improvement process is defined such that a fully efficient economy would grow at 6% per year on
average. The simulation was conducted over 4,000 periods (days), that is roughly 17 years. The values chosen for the param-
eters are reasonable but arbitrary – the model has not been empirically calibrated yet.

Figs. 7–9 show time series for the basic economic variables of the model: the planned and realized monthly output and
actual sales, the skill-dependent unemployment rates in each of the two regions, and the average wage level. Noteworthy are
the following:
Household:
read vacancies

Firm:
send vacancies

Firm:
read applications

Household:
send applications

Household:
read job offers

Firm:
send job offers

Firm:
read job acceptance

Household:
send job acceptance

1. 2. 3. 4.

Fig. 6. Sequence of events in the labor market. The figure shows the messages that are sent between firms and job seekers in the search-and-matching
algorithm.



Fig. 7. Time series of monthly planned production and actual output in each region.

Fig. 8. Time series of the unemployment rate for each skill-level.
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1. The output fluctuates over time and, after about 1000 periods, starts to markedly differ between both regions. There is a
sharp increase in aggregate output starting at period 3000. However, from period 3500 on, this increase is exclusively due
to output growth in region 1. The output in region 2 decreases sharply (see Fig. 7).

2. In both regions, the unemployment rates differ strongly depending on the general skill level before period 3000. The
higher the skill level, the lower is the unemployment rate. After period 3000 (i.e. in the high growth phase), unemploy-
ment is almost nil for all groups. The lowest skill levels, however, are last to reach full employment (see Fig. 8).

3. The wages increase over time for all skill-levels, reflecting the exogenous increase in productivity. The speed of increase
becomes much higher when the skill levels 3–5 become fully employed (around period 3200), due to the tightening of the
labor market (see Fig. 9).



Fig. 9. Time series of the overall average wage.

C. Deissenberg et al. / Applied Mathematics and Computation 204 (2008) 541–552 551
4. At 3% p.a. on the average, the growth rate of the economy remains much below the efficient growth rate of 6%, reflecting
the inefficiency introduced by the search and matching behavior on the labor market and the local consumption goods
markets.

Thus, the simplified model not only generates plausible outcomes. Starting with simple, reasonable hypotheses, it shows
that even starting with almost identical initial conditions in the two regions, the emerging heterogeneity among agents
may lead, after an unpredictable time, to a stark differentiation between the regional economies. It reveals that a sudden
take-off can occur, again at an unpredictable time, although the (exogenous) increase in capital productivity is fairly
smooth.

It gives strong insights on the inefficiencies resulting from an explicit spatial and temporal organization of markets.
It provides a platform to explore, among others, the relative advantages of economic policies such as increasing the
general skill level of the workers versus subsidizing the industry to increase productivity through additional R&D
spending.

5. Conclusion

Within the EURACE project we are building an extremely large and complicated model of a much larger and more
complicated real system – the European economy. It would be presumptuous to expect that the model will be able to
compete, in terms of aggregate predictive power, with the standard time series and econometric models developed for
decades by all main economic research centers. However, we expect to provide a number of new insights that cannot
be obtained using the traditional, representative agent approaches. In particular, we are confident that our model will
reproduce most of the main statistical regularities that characterize real economies and that, typically, remain unex-
plained and unexplainable for the economist. These are, for example, the distribution of firms’ sizes, the distribution of
income and wealth, diverse aspects of the spatial structure of human activities, many properties of financial time series,
etc. Most importantly, the model should shed light on the way this aggregate behavior emerges from the interaction of
many independent agents with much more limited cognitive and computational capabilities than classical theory presup-
poses. The preliminary numerical exercises we conducted suggest that we indeed are on the right way to obtain new and
interesting results.

Our focus on the emergence of macro-behavior from the local, micro-interactions explains why we place so much empha-
sis on being able to simulate extremely large economies. This is because in a complex system many phenomena reveal them-
selves only when the agent population is sufficiently large. What sufficiently large concretely means, however, usually
cannot be determined a priori. Thus, in addition to the technical prowess of being able to run such a large-scale parallel com-
putational model, and to the importance of the computational techniques we are developing for many potential practical
applications in other domains, our research shall shed light on the minimal size of an economy necessary for diverse self-
organization phenomena to take place.
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