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ABSTRACT 
Traditional Agent Based Modelling (ABM) 
applications and frameworks lack the close 
coupling between the simulation behaviour and its 
visualisation that is required to achieve real time 
interactive performance with populations above a 
couple of thousand. The Graphics Processing Unit 
(GPU) offers an ideal solution to simulate and 
visualise the behaviour of high population ABM. 
The parallel nature of processing offers significant 
and scalable performance increases, with the added 
benefit of avoiding data transfer between the 
simulation and rendering stages. In this paper we 
demonstrate a framework for real-time simulation 
and visualisation of massive Agent Based 
modelling on the GPU (ABGPU). 
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1. INTRODUCTION 
 ABM allows complex natural behaviour or various 
interacting entities to emerge from a set of simple 
individual rules. Phenomenon such as flocks of 
birds, schools of fish, and complex biological 
systems of cells are a good example of how 
systems with simple goals can demonstrate 
complex emergent behaviour as a result of 
communication with other neighbouring agents. 
Current agent based modelling techniques and 
frameworks, are mostly aimed at the Central 
Processing Unit (CPU) with the agents rendered on 
the GPU only after the agent has performed some 
serial communication and behaviour. Although this 
technique is simple and effective for small 
populations, the weak scalability of using serial 
processing for large amounts of computation 
combined with the slow transfer speeds from main 
memory to the GPU create obvious bottlenecks.  
 
Fortunately both transfer bottlenecks and small 
population sizes can be avoided by considering the 
GPU as a simulation platform in addition to its 
usual role of graphics rendering. The shift from a 

fixed function GPU pipeline, to a number of 
programmable stages, has made this possible by 
allowing GPU’s to be utilised as a general high 
performance parallel stream processor for 
consumer use. The use of General Purpose 
computation on GPUs (or GPGPU) is rising due to 
increasing popularity over recent years, however 
programmers must have a good understanding of 
the underlying hardware use it to its best potential 
and see significant performance increases. The 
programmable fragment processor is by far the 
most useful stage of the GPU rendering pipeline to 
GPGPU programmers. Its purpose in the graphics 
pipeline of processing a quad of fragments (or 
potential pixels) means that by filling an n × n, 2D 
orthogonal viewpoint the processor can be invoked 
to compute a parallel operation on each pixel in the 
n × n quad. By reading data from a number of 
bound read only textures the processor may then 
perform computations that can be fed back into 
texture memory for use in further computations. 
The process of programming general computation 
in the manor described above can be extremely 
complex and notoriously difficult to debug. The  
agent specification presented in this paper plays an 
important role in hiding the complexity of the 
underlying algorithms. This allows the user to 
focus on the individual agent’s behaviour without 
explicit knowledge of the graphics pipeline itself. 
 
Whilst recent work [1] has demonstrated how the 
GPU can lead to a significant performance increase 
for ABM in 2D, this paper describes a framework 
(ABGPU) which not only improves upon the 
performance of existing 3D GPU ABM 
implementations, but also tackles usability by 
providing an API similar to that of CPU libraries 
which allows agent specification and scripting. 
More specifically this paper describes a process in 
which agents can be mapped to the GPU, and a 
parallel communication algorithm, which allows 
agents to communicate across spatial partitions 
without time consuming read back operation to the 
CPU. The result of this is an architecture allowing 
massive and scalable models which by avoiding 
any slow transfer bottlenecks are able to 



demonstrate incredibly high performance. Within 
this paper ABGPU is demonstrated through a 
Boids implementation which uses the libraries 
feedback routines to implement a Level Of Detail 
(LOD) rendering system of fish, allowing 
advanced visualisation at interactive rates. 

2. RELATED WORK 
ABM dates back to Reynolds [2] who first 
rendered a flock of 80 individuals (described as 
Boids) using offline calculations taking up to 30 
seconds per second of footage rendered. 
Performance since then has increased substantially 
with the most recent ABM implementations 
boasting upwards of two million interacting agents. 
This section concentrates on describing recent 
ABM work which either has a focus on high 
performance GPU implementations or spatial 
partitioning techniques for parallel architectures.  
 
In the most simplistic case of processing agent 
communication, each agent potentially 
communicates with every other agent in the 
system. Whilst this guarantees that any limited 
range communication between agents takes place, 
the O(n²) complexity results in large amounts of 
wasted computation that escalates non-linearly as 
the interaction radius is reduced. Despite this, the 
simplicity of implementing the all pairs technique 
using serial iterations through the population (for 
each agent) has made it extremely popular for CPU 
based libraries and toolkits [3, 4, 5]. The 
advantages of mapping an all pairs implementation 
to the GPU were first demonstrated by Nyland et al 
[6] who performed an N-body force simulation 
using an N × N (where N is the population size) 
communication space and parallel reduction for 
force averaging. The idea has been adopted 
recently by Drone [7] who applied it to the Boids 
flocking model by using automatically generated 
mip-maps to calculate average velocity and 
positions used to update and render a few thousand 
Boids in real time. Drone also describes a novel 
environment interaction technique that involves 
rendering geometry into a volume texture and 
using the geometry shader to calculate planer 
normals for each volume voxel. 
 
Whilst all pairs implementations are suitable for 
Agent Based (AB) systems in the orders of 
hundreds to low thousands, the functionality to 
achieve higher populations is dependant on more 
scaleable algorithms. Spatial partitioning offers the 
most significant performance gain by reducing 
unnecessary communication between distant 
agents. Such a technique maps exceptionally well 
to parallel distributed systems such as processing 
grids networked by high speed Ethernet. Quin et al 
[8] demonstrated this technique using a SWARM 
cluster to update 10,000 evacuating pedestrians 50 

times per second. The implementation consisted of 
partitions being split across 10 processors which 
used a message passing interface (MPI) library to 
handle communication of pedestrians across 
boundaries. The same technique is applied in the 
more recent FLAME [9] toolkit, which using 
formal agent specification techniques is primarily 
aimed at fast parallel simulation of large biological 
systems. 
 
Erra et al. [10] describes an implementation of 
GPU ABM which incorporates spatial partitioning 
by using a sorting algorithm to assign individuals 
to spatial cells. Although the GPU is used in this 
implementation to perform agent updates, the 
sorting algorithm and nearest neighbour 
calculations are performed on the CPU. Erra et al. 
[10] highlights the cost of this phase but introduces 
a novel ‘scattering matrix’ (not to be confused 
with the scatter matrix described later), which 
indicates the affinity of the flock in 27 cells. When 
the flock’s movement is uniform the scatter matrix 
contains minimal values, however in the presence 
of a predicator or global obstacle the matrix values 
increase indicating a large movement of agents 
across spatial cells. Using the scattering matrix 
technique it is suggested that up to 20% of frames 
can avoid performing the CPU sorting, allowing up 
to 13000 agents to be modelled at up to 20 Frames 
per second (Fps), a slight improvement on previous 
work [11] of 8000 (at 20 Fps) using a similar 
technique. 
 
Similarly to ABM simulation on the GPU, recent 
work by Reynolds [12] demonstrates how the 
PS3’s Cell Processor can be used to efficiently 
render schools of fish. The PS3 architecture is 
somewhat different to that of traditional GPU or 
CPU, and although a NVIDIA RSX card is 
available for graphics processing the PS3 contains 
an additional IBM Cell Microprocessor capable of 
scheduling eight parallel Synergistic Processing 
Units (SPU’s) with a high bandwidth (25.6 
GBytes/sec) connection to the single cells Power 
Processing Unit (PPU). Reynolds [12] uses the 
architecture to batch a number of spatial buckets of 
fixed array size to the SPU’s, which in turn 
calculate the nearest N neighbours for each 
individual in the bucket by considering 
neighbouring buckets through communication 
across the PS3’s fast memory cache. Although 
architecturally different to the GPU, the PS3 
implementation which is more similar to that of 
distributed parallel systems [8, 9] is able to render 
up to 10,000 low resolution fish (36 polygons) in 
3D space (15,000 with a 2D crowd) at 60 Fps. 
When combined with more advanced underwater 
lighting effects and dynamic LOD up to 5000 fish 
of up to 400 polygons can be rendered at 30 Fps. 
 



In the only example of agent based modelling 
entirely on the GPU, D’Souza et al. [1] describes 
the implementation of an ABM framework based 
on a 2D environment partitioned into a regular 
lattice small enough to contain single agents. 
Agent’s positions are then scattered using a vertex 
shader into a separate buffer with collisions (of 
multiple agents per cell in the collision map) 
handled by multi pass priority system with 
efficiency dependant on the cell movement size of 
the agents themselves. In addition to this D’Souza 
describes a novel solution to agent birth and death 
through an iterative randomised scheme, which 
although singularly does not guarantee successful 
reproduction, converges quickly to a 95% 
likelihood after only five iterations. Whilst the 
technique described is successful in easily 
demonstrating real time performance of over one 
million agents, the framework is restricted to a 2D 
lattice which makes the technique unsuitable for 
3D simulation of continuous valued agents, such as 
those presented in this paper.  

3. AGENT MAPPING TO THE GPU 
Most important to providing a library for ABM on 
the GPU, is hiding the underlying graphical 
concepts, the most obvious of these being texture 
data storage. ABGPU uses an agent specification 
as a means of generating a mapping function (F) to 
allow agent scripts to directly access memory 
variables without explicit knowledge of the 
underlying storage mechanisms. Within the 
mapping process agent variables are translated by 
F into ‘2t’ textures, with dimensions of √N ×√N, 
where N is the population size, containing up to 
four variables (in each of the red, blue, green and 
alpha channels respectfully). Similarly GPU 
particle system implementations [13] agents can 
then be processed in parallel by invoking a 
fragment program to perform a read and write to 
texture space on the double buffered agent data 
textures, with the agent script being used to 
generate the output data in between. Multiple 
Render Targets (MRTs) allow the stacked textures 
to be updated in a single pass when the OpenGL 
Frame-Buffer Object (FBO) extension is used. One 
significant point to consider is that FBO’s support 
multiple render targets only when the multiple 
textures are of the same internal texture format. For 
this reason ABGPU allows only 32 bit float values 
as agent memory, this limitation is expected to be 
avoided in future releases, which will use more 
direct access methods to GPU memory. Figure 1 
demonstrates the mapping process of an agent 
specification into agent space at position ‘i, j’. A 
simple state machine represents synchronisations 
after the communication algorithm, agent update 
phase and rendering.  
 

 
Figure 1 – The mapping of an agent specification into 

agent space at position ‘i, j’. 

4. AGENT COMMUNICATION 
In order to allow the communication between 
agents to take place, a partitioning scheme is used, 
which splits the environment space into portions 
equal to that of the communication radius of the 
agents. This technique differs to that of D’Souza et 
al. [1] in that the significantly smaller partition 
space (with larger physical partitions) is used only 
to hold the indices of the agents occupying the 
partition rather than the actual agent data itself. For 
agents to reference neighbouring partitions it 
therefore requires the creation of a dynamic 
partition structure, each with an unlimited number 
of agents. This is achieved through first generating 
a positional partition identifier for each agent, 
along with a pointer to the agents position in 2D 
(agent) texture space. This identifier is then used to 
sort the pointers and reorder the agent data in order 
to increase the cache hit rate during later stages. A 
simulated scattering technique is then used to write 
to the boundary partition matrix, which is used 
during the update stage to determine the location of 
neighbouring agents. 
 
Bitonic GPU sorting has received a wealth of 
interest in recent years leaving a good choice of 
suitable sorting algorithms. GPUSort [14] 
improves upon the performance of Purcels [15] 
original implementation as well as the performance 
of Kipfers [16] more cache efficient 
implementation and has hence been used as the 
basis for sorting within ABGPU. The improved 
bitonic network (i.e. an improved parallel 
comparison network for each rendering pass) 
offers two significant advantages despite the same 
O(nlogn) overall complexity of alternative 
methods. The first of these is that the sorting 
network enhances the GPU cache memory hit rate 
by increasing the number of texture lookups in 
close proximity. The second improvement is the 



use of GPU blending functionality to perform the 
sorting steps. These processes balance the GPU 
much more than a pure fragment processor 
implementation. In its original state the GPUSort 
library is unsuitable for sorting non unique 
identifiers, consequently it has been modified 
slightly to allow this.  
 
With the agents sorted by spatial partition it is easy 
to see how agents are able to perform a linear 
search between boundaries in order to consider 
neighbouring influences. More difficult is 
consideration of agents in neighbouring 
boundaries; assuming that the start and end 
position of agents within the sorted list can be 
calculated for each spatial partition the agents can 
perform a serial scan across agents with the same 
partition identifier for its own partition and the 26 
neighbouring partitions. The method used for 
dynamically generating this partition boundary 
matrix is adopted from rigid body particles physics 
[17, 18] and requires scattering the first agent for 
each partition into a 3D partition matrix. Within 
ABGPU this is achieved by rendering N points (N 
agent population size) each with a texture 
coordinate between 0.5 and √N+0.5 in the x and y 
dimension. Vertex texture fetching then allows 
these coordinates to be used to lookup the partition 
values which are compared to the previous agents 
value to find the start of a spatial boundary. Rather 
than each agent in the update stage performing a 
linear search to find the end of each spatial 
boundary this is performed in the same vertex 
scatter program which scatters both the start and 
end index (position in agent space) of agents, using 
multi texture semantics, which can the be used to 
iterate between the two agent space positions 
during the update phase. To ensure that it is 
possible to scatter to each position within the 
partition boundary matrix a view port must be used 
which enables an output size equivalent to that of 
the partition boundary matrix itself. Using a 
traditional graphics API this gives the option of 
either rendering directly to a 3D texture or to 
render to a stack of 2D textures. As portability and 
performance is a key issue in ABGPU the 2D 
texture method is preferable as 3D textures have 
far less hardware support with no significant 
performance advantage. For an interaction radius 
‘i’ in an environment space ‘e’ between 0 and 1 
all partition boundary values can be stored with a 
2D texture of size ceil(√(1/i3))with an over 
4 million total partitions within; allowed by the 
maximum 2D texture size of 2048. Figure 2 
demonstrates the complete steps of the algorithm 
including the agent update. Texture space inputs 
and outputs are indicated between each stage.  

 
Figure 2 – Render passes and data bindings for a 

single update step. 

5. USING ABGPU 
ABGPU uses a number of C/C++ classes as well as 
an agent update script to create an AB simulation. 
The agent update script has a C like syntax and can 
be compiled with a C header file which contains 
place holders for key communication functions. 
Figure 3 demonstrates the simplicity of a simple 
agent based script in which an agent moves 
towards its perceived centre of the population. The 
structure of the update script is that an agents 
main function must be provided, which accepts an 
agent structure and a GLOBALS structure as 
arguments returning an agent structure. Upon 
setting the agent update script through an instance 
of an Agent Population class, any references 
to agent variables under go the same mapping 
process as any upload or download of agent data. 
The placeholders FOR_EACH_AGENT_A and 
END_FOR EACH are automatically replaced with 
the appropriate nested loop for retrieving each 
agent’s data within the specified communication 
radius. The supporting C++ classes which are 
required to generate an AB simulation are as 
follows. Additionally a SceneVisualiser 
header is included which sets up a basic 3D 
viewpoint with mouse controls and basic point 
rendering of agents. This of course can be modified 
as in the case of the Boids fish example which uses 
more complex agent orientation and swimming 
animations.  



 
Figure 3 – A simple agent script using ABGPU 

scripting. 
 
AgentSpecification – An agent 
specification is required to determine the GPU 
texture space required for agent data storage. 
Agent specifications currently support up to 32 
internal agent values on a DirectX 10 series card 
with 8 MRTs, 16 values through 4 MRTs on most 
DirectX 9 cards. 
 
Agent – An agent requires an agent specification 
and can be used to get and set values using the get 
and set agent variable methods respectfully.  
 
AgentPopulation – An instance of the Agent 
Population class is responsible for the generation 
of GPU shader code by translating the agent update 
script into compilable cg code and by dynamically 
creating code for the sorting and displacement 
stages. Agent data can be set and retrieved by 
passing an array of agents to the 
AgentPopulations upload and download data 
methods and the simulation can be stepped by 
using the step or StepN (N being the number of 
steps) methods. Global variables are controlled by 
the agent population and can be got and set 
between simulation steps. Included within the 
global variables are a number of application 
variables which are accessible by default. These 
include the environment size, the agent data texture 
size and the number of spatial partitions. An 
additional distance sort method is also available 
allowing the agents to be distance sorted by any 
agent variable. 
 
AgentFeedback – Agent feedback uses a 
number of parallel reduction functions to provide 
real time feedback of the agent population without 

reading back the entire agent population data. An 
instance of the AgentFeedback class can be 
used in conjecture with a number of 
FeebackVariable instances. Figure 4 
demonstrates the C++ code for providing two 
feedback values of type FEEDBACK_MAX and 
FEEDBACK_SUM respectively. 
 

 
Figure 4 – An example of Agent Feedback using two 
FEEDBACK_MAX and a single FEEDBACK_SUM 

FeedbackVariable. 
 
Additionally there is also a FEEDBACK_MIN and 
FEEDBACK_COUNTN feedback type. The 
COUNTN can be used to count all occurrences of 
the value N across the agent population. 
 
 

6. BOIDS MODEL 
The Boids model used to demonstrate the 
functionality of ABGPU is adapted from Reynolds 
original model [2] with the introduction of a goal 
rule, which is implemented using global variables. 
The agent specification consists of seven variables 
and x, y and z component for both position and 
velocity and a LOD variable used to hold the 
agents current detail level. The global variables 
controlling the goal point are potentially set after 
each simulation step by considering random 
variables. If this variable is below some threshold 
the goal point is moved to a new position within 
the environment bounds. Global values are also 
used to control agent interaction though the setting 
of a number of weights which control each of the 
Boids rules. The ultimate behaviour of the Boids is 
determined though a steer vector which is the 
summed weight of each rule which is also bound to 
a maximum threshold to preserve a maximum 
speed within the simulation. A simple menu 
system is used to control the rule weights, which in 
turn affect the behaviour in real time. 
 
Rendering of the fish is achieved through two 
methods depicted in Figures 6 and 9. The first 
(Figure 6) uses the same technique as the inbuilt 
primitive point rendering, where instead of a point 
a low polygon count (66 faces) model for each fish 
agent is rendered into a single display list. As with 
the vertex scatter multi texture coordinates are used 

FeedbackVariable variables[2]; 
 
variables[0].feedbackType = FEEDBACK_MAX; 
variables[0].feedbackVariable = "agent_pos_x"; 
 
variables[1].feedbackType = FEEDBACK_SUM; 
variables[1].feedbackVariable = "agent_pos_x"; 
 
AgentFeedback feedback = new AgentFeedback(2, 
variables, agent_population); 
 
float2 feedbackData; 
feedback.getFeedback(feedbackData); 
 
 



to provide both visual texture map lookup values 
and lookup cords for the fish data in agent space. 
For higher resolution agent representations (Figure 
10), rendering the entire population into a single 
display list is not an option as the memory 
requirements soon escalate. Additionally, to use a 
dynamic LOD system the number of each fish at 
each detail level changes continuously dependant 
on the user viewpoint and fish behaviour. In order 
to provide a high detail simulation the Boids 
update script uses global values for the eyes x, y 
and z position to calculate a detail level dependant 
on the agent position. The three decreasing detail 
levels of either 0, 1 or 2 (Figure 5) are then 
counted using three FEEDBACK_COUNTN 
feedback variables. With the total number of each 
detail level know the agents are then sorted by the 
LOD value so the CPU can draw the correct 
number of LOD models in order. Display lists are 
again used to improve performance, however a 
display list is used for each model at each detail 
level reducing the CPU to GPU communication to 
a single display list call for each agent in the 
system. 
 

 
Figure 5 - A population of 16384 agents with 

rendered with the LOD system. Red, Green and Blue 
colours represent three detail levels 0, 1 and 2 

respectively. 
 
Animation of the fish is achieved through the use 
of a vertex shader. This uses texture indices passed 
from the agent population to allow the agent data 
to be used to first offset the agents to the correct 
position, and then orientate vertices and normals 
about two dimensions with a restriction on positive 
and negative vertical inclination. Finally the same 
vertex shader is used to provide some animation of 
the fish bodies with the body being displaced along 
its length through a sine wave giving the effect of 
swimming through the water.  
 
 
 

7. RESULTS 

 
Figure 6 – 65,536 Interacting fish Agents at 30 Fps 

 
The results obtained are based on a single PC with 
an AMD Athlon 2.51Ghz Dual Core Processor 
with 3GB of RAM and a GeForce 8800 GT. As the 
system performance is highly dependant on the 
complexity of the behaviour, the number of agent 
variables and the agent communication radius, 
comparisons with previous work are limited to that 
which most closely resembles the work in this 
paper. Despite the difference in underlying 
hardware both Reynolds [12] and Erra at al. [10] 
describe systems of agents in continuous valued 
3D space and are consequently the most suitable 
for any direct performance comparisons. 
 
Figure 7 shows the recorded performance of the 
Boids implementation with the varying colours 
representing variable communication radii in an 
environment clamped between the range of 0 and 
1. The Fps readings were obtained after the 
simulation had run for some time allowing any 
local groups to form and to avoid influence of the 
Boids initial random positions and velocities. The 
performance results are capped at 200 Fps and not 
all values of communication radii attempt to 
simulate the larger population sizes. With an 
interaction radius of between 0.03125 and 
0.0078125 it is possible to simulate 65536 Boid 
agents at 60 Fps. Erra et al. [10] simulated the 
same number of agents at less than 5 Fps. The 
system presented in this paper is, instead, able to 
render up to a million agents at 5Fps without 
visualisation, although it has to be noted that the 
simulation can only sustain this rate when the 
weight of the single goal rule is significantly small 
enough to allow multiple local groups to form. It 
must also be noted that Erra et al. [10] simulated 
interaction with 5 static scene objects and one 
dynamic one, which currently is not done in this 
simulation. Such behaviour will be incorporated at 
a later date through the use of global variables. 
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Figure 7 – Recorded performance with x axis representing the square of the population size and the y axis 

representing Fps recorded over multiple frames. 
 
 
It is surprising how little effect rendering the 
population using both the point primitives and low 
polygon count models has on the performance of 
the system. In most cases a maximum of 5-10 % 
drop in frame rate is observed however with 
populations over 16384 the performance of the low 
polygon model rendering is reduced further. In fact 
with a communication radius of 0.03125, 65536 
agents can be rendered as simple fish sustaining 30 
Fps (Figure 6) and as point sprites at 50 Fps. In 
contrast this is substantially more than the reported 
performance of previous work, the most impressive 
being Reynolds [12] reporting 10000 agents at 60 
Fps. When rendering using higher resolution 
agents with LOD system, the performance is 
obviously reduced due to the additional feedback 
and sorting stages performed before rendering (this 
effect is demonstrated by figure 8). Despite this, 
16384 agents with a maximum detail level of 1500 
polygons can be rendered at over 30 Fps. The 
majority of the performance slowdown is attributed 
to the secondary sort rather than the LOD feedback 
which makes little overall performance difference.  
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Figure 8 – Performance effect of agent feedback with 

a communication radius of 0.03125 

As rendering is achieved with such high 
performance in all but the most extreme cases the 
agent update step is clearly the performance 
bottleneck of the system. In order to overcome this 
both Reynolds [12] and Erra et al. [10] avoided 
performing the full agent update step for each 
animation frame. Reynolds [12] simply decoupled 
the simulation and rendering stages with 1/8th of 
the population being updated per rendering frame, 
whilst Erra et al. [10] used the earlier mentioned 
scattering matrix to vastly avoid recalculation 
when the flock was uniform. AGBPU does not 
implement either of these techniques and therefore 
it can be though of as considerably more brute 
force with this respect.  
 
Arguably the most significant difference between 
ABGPU and that of both Erra et al. [10] and 
Reynolds [12] is the neighbourhood heuristic and 
consequently the number agents considered for 
communication. Both implementations favour an 
N-Nearest neighbour solution in opposition to the 
communication radius technique used within this 
work and that of the original Boids paper. 
Additionally ABM GPU work by D’Souza[1] and 
collision only based particle physics 
demonstrations by Green [18] perform 
significantly fewer communications than the agents 
described in this paper. In the case of D’Souza [1] 
a real time performance of 2 million agents is 
reported however agents are placed within a 2D 
lattice with only a 9x9 vision filter. The performance of 
Greens [18] physically based particle demonstrations 
which use the same boundary scatter technique are 
slightly higher than our own results (most likely as 
a result of utilising the CUDA radix sort which 
limits the algorithms to G80 hardware) however 
the ridged particle and partition size vastly reduces 
the number of particles considered during the more 



simplistic update stage. Figure 9 shows both the 
number of agents considered for communication 
(Lookups) and those which are actually within the 
agents interaction radius and are hence 
communicated with. The results of this were 
obtained by using a communication radius of 
0.0625 after 1000 iterations of the simulation. 
From this the efficiency of the spatial partitioning 
method can be considered, and on average is 
roughly 1/3rd, a figure far superior to that of the 
worst case all pairs solution which is the only 
other method which guarantees all interactions. In 
cases where hundreds of agents are serially 
considered during the update stage it is surprising 
the system is able to sustain real-time performance. 
This is attributed to the fast cache of the 8800 GT 
card and the displacement of agent data after the 
sort stage which increases the cache hit rate and 
dynamic branch coherency between pixel quads.  
 

N Max Min Sum Average
262144 16334 0 851476608 3248
65536 4244 0 61600140 940
16384 1530 0 5409149 330
4096 253 0 246636 60
1024 44 0 10726 10
256 15 0 684 3

N Max Min Sum Average
262144 29461 0 2431892736 9277
65536 8862 2 163508320 2495
16384 2638 1 12541857 765
4096 526 1 653152 159
1024 131 1 32572 32
256 29 1 2071 8

N Efficiency
262144 35.0
65536 37.7
16384 43.1
4096 37.8
1024 32.9
256 33.0
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Figure 9 – Texture Lookup Performance of a single 
frame with a communication radius of 0.0625 after 

1000 iterations 
 

8. CONCLUSIONS & FUTURE 
WORK 

In this paper ABGPU has been presented as a fast 
efficient method of performing agent based 
modelling. Whilst the current performances are 
impressive the system would benefit from 
additional functionality demonstrated in alternative 
GPU work. The introduction of birth and death 
allocation [1] on the GPU is the most favourable of 
these, interaction with advanced or dynamic 
environment maps [7] is also highly desirable. 
Additionally the decision to sacrifice simplicity for 
portability may be reconsidered by producing a 
Compute Unified Device Architecture (CUDA) 
backend which will avoid some of the restrictions 
imposed by packing data into textures (most 
notably the agent variable count). An advanced 
extension to the current work could consider 
scaling the algorithm to multiple GPUs either 
within a single host machine or across a high 

performance GPU grid. These will be the topics of 
future work and will open ABGPU to a wider 
range of models beyond the continuous population 
systems which the current work has been so 
heavily influenced by.  
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Figure 10 – 16,384 agents with a maximum detail level of 1500 polygons rendered at over 30 Fps

 
 


