
Agent Based GPU, a Real-time 3D Simulation
and Interactive Visualisation Framework for
Massive Agent Based Modelling on the GPU

Paul Richmond

The Department of Computer Science
University of Sheffield, UK

 Paul@dcs.shef.ac.uk

Daniela Romano
The Department of Computer Science

University of Sheffield, UK
 D.Romano@dcs.shef.ac.uk

ABSTRACT
Traditional Agent Based Modelling (ABM)
applications and frameworks lack the close
coupling between the simulation behaviour and its
visualisation that is required to achieve real time
interactive performance with populations above a
couple of thousand. The Graphics Processing Unit
(GPU) offers an ideal solution to simulate and
visualise the behaviour of high population ABM.
The parallel nature of processing offers significant
and scalable performance increases, with the added
benefit of avoiding data transfer between the
simulation and rendering stages. In this paper we
demonstrate a framework for real-time simulation
and visualisation of massive Agent Based
modelling on the GPU (ABGPU).

Keywords
Agent Based Modelling (ABM), Graphics Processing
Unit (GPU), GPGPU, Real-time Simulation,
Visualisation, Flocking, Swarms, Spatial Partitioning,
Parallel Algorithms

1. INTRODUCTION
 ABM allows complex natural behaviour or various
interacting entities to emerge from a set of simple
individual rules. Phenomenon such as flocks of
birds, schools of fish, and complex biological
systems of cells are a good example of how
systems with simple goals can demonstrate
complex emergent behaviour as a result of
communication with other neighbouring agents.
Current agent based modelling techniques and
frameworks, are mostly aimed at the Central
Processing Unit (CPU) with the agents rendered on
the GPU only after the agent has performed some
serial communication and behaviour. Although this
technique is simple and effective for small
populations, the weak scalability of using serial
processing for large amounts of computation
combined with the slow transfer speeds from main
memory to the GPU create obvious bottlenecks.

Fortunately both transfer bottlenecks and small
population sizes can be avoided by considering the
GPU as a simulation platform in addition to its
usual role of graphics rendering. The shift from a

fixed function GPU pipeline, to a number of
programmable stages, has made this possible by
allowing GPU’s to be utilised as a general high
performance parallel stream processor for
consumer use. The use of General Purpose
computation on GPUs (or GPGPU) is rising due to
increasing popularity over recent years, however
programmers must have a good understanding of
the underlying hardware use it to its best potential
and see significant performance increases. The
programmable fragment processor is by far the
most useful stage of the GPU rendering pipeline to
GPGPU programmers. Its purpose in the graphics
pipeline of processing a quad of fragments (or
potential pixels) means that by filling an n × n, 2D
orthogonal viewpoint the processor can be invoked
to compute a parallel operation on each pixel in the
n × n quad. By reading data from a number of
bound read only textures the processor may then
perform computations that can be fed back into
texture memory for use in further computations.
The process of programming general computation
in the manor described above can be extremely
complex and notoriously difficult to debug. The
agent specification presented in this paper plays an
important role in hiding the complexity of the
underlying algorithms. This allows the user to
focus on the individual agent’s behaviour without
explicit knowledge of the graphics pipeline itself.

Whilst recent work [1] has demonstrated how the
GPU can lead to a significant performance increase
for ABM in 2D, this paper describes a framework
(ABGPU) which not only improves upon the
performance of existing 3D GPU ABM
implementations, but also tackles usability by
providing an API similar to that of CPU libraries
which allows agent specification and scripting.
More specifically this paper describes a process in
which agents can be mapped to the GPU, and a
parallel communication algorithm, which allows
agents to communicate across spatial partitions
without time consuming read back operation to the
CPU. The result of this is an architecture allowing
massive and scalable models which by avoiding
any slow transfer bottlenecks are able to

demonstrate incredibly high performance. Within
this paper ABGPU is demonstrated through a
Boids implementation which uses the libraries
feedback routines to implement a Level Of Detail
(LOD) rendering system of fish, allowing
advanced visualisation at interactive rates.

2. RELATED WORK
ABM dates back to Reynolds [2] who first
rendered a flock of 80 individuals (described as
Boids) using offline calculations taking up to 30
seconds per second of footage rendered.
Performance since then has increased substantially
with the most recent ABM implementations
boasting upwards of two million interacting agents.
This section concentrates on describing recent
ABM work which either has a focus on high
performance GPU implementations or spatial
partitioning techniques for parallel architectures.

In the most simplistic case of processing agent
communication, each agent potentially
communicates with every other agent in the
system. Whilst this guarantees that any limited
range communication between agents takes place,
the O(n²) complexity results in large amounts of
wasted computation that escalates non-linearly as
the interaction radius is reduced. Despite this, the
simplicity of implementing the all pairs technique
using serial iterations through the population (for
each agent) has made it extremely popular for CPU
based libraries and toolkits [3, 4, 5]. The
advantages of mapping an all pairs implementation
to the GPU were first demonstrated by Nyland et al
[6] who performed an N-body force simulation
using an N × N (where N is the population size)
communication space and parallel reduction for
force averaging. The idea has been adopted
recently by Drone [7] who applied it to the Boids
flocking model by using automatically generated
mip-maps to calculate average velocity and
positions used to update and render a few thousand
Boids in real time. Drone also describes a novel
environment interaction technique that involves
rendering geometry into a volume texture and
using the geometry shader to calculate planer
normals for each volume voxel.

Whilst all pairs implementations are suitable for
Agent Based (AB) systems in the orders of
hundreds to low thousands, the functionality to
achieve higher populations is dependant on more
scaleable algorithms. Spatial partitioning offers the
most significant performance gain by reducing
unnecessary communication between distant
agents. Such a technique maps exceptionally well
to parallel distributed systems such as processing
grids networked by high speed Ethernet. Quin et al
[8] demonstrated this technique using a SWARM
cluster to update 10,000 evacuating pedestrians 50

times per second. The implementation consisted of
partitions being split across 10 processors which
used a message passing interface (MPI) library to
handle communication of pedestrians across
boundaries. The same technique is applied in the
more recent FLAME [9] toolkit, which using
formal agent specification techniques is primarily
aimed at fast parallel simulation of large biological
systems.

Erra et al. [10] describes an implementation of
GPU ABM which incorporates spatial partitioning
by using a sorting algorithm to assign individuals
to spatial cells. Although the GPU is used in this
implementation to perform agent updates, the
sorting algorithm and nearest neighbour
calculations are performed on the CPU. Erra et al.
[10] highlights the cost of this phase but introduces
a novel ‘scattering matrix’ (not to be confused
with the scatter matrix described later), which
indicates the affinity of the flock in 27 cells. When
the flock’s movement is uniform the scatter matrix
contains minimal values, however in the presence
of a predicator or global obstacle the matrix values
increase indicating a large movement of agents
across spatial cells. Using the scattering matrix
technique it is suggested that up to 20% of frames
can avoid performing the CPU sorting, allowing up
to 13000 agents to be modelled at up to 20 Frames
per second (Fps), a slight improvement on previous
work [11] of 8000 (at 20 Fps) using a similar
technique.

Similarly to ABM simulation on the GPU, recent
work by Reynolds [12] demonstrates how the
PS3’s Cell Processor can be used to efficiently
render schools of fish. The PS3 architecture is
somewhat different to that of traditional GPU or
CPU, and although a NVIDIA RSX card is
available for graphics processing the PS3 contains
an additional IBM Cell Microprocessor capable of
scheduling eight parallel Synergistic Processing
Units (SPU’s) with a high bandwidth (25.6
GBytes/sec) connection to the single cells Power
Processing Unit (PPU). Reynolds [12] uses the
architecture to batch a number of spatial buckets of
fixed array size to the SPU’s, which in turn
calculate the nearest N neighbours for each
individual in the bucket by considering
neighbouring buckets through communication
across the PS3’s fast memory cache. Although
architecturally different to the GPU, the PS3
implementation which is more similar to that of
distributed parallel systems [8, 9] is able to render
up to 10,000 low resolution fish (36 polygons) in
3D space (15,000 with a 2D crowd) at 60 Fps.
When combined with more advanced underwater
lighting effects and dynamic LOD up to 5000 fish
of up to 400 polygons can be rendered at 30 Fps.

In the only example of agent based modelling
entirely on the GPU, D’Souza et al. [1] describes
the implementation of an ABM framework based
on a 2D environment partitioned into a regular
lattice small enough to contain single agents.
Agent’s positions are then scattered using a vertex
shader into a separate buffer with collisions (of
multiple agents per cell in the collision map)
handled by multi pass priority system with
efficiency dependant on the cell movement size of
the agents themselves. In addition to this D’Souza
describes a novel solution to agent birth and death
through an iterative randomised scheme, which
although singularly does not guarantee successful
reproduction, converges quickly to a 95%
likelihood after only five iterations. Whilst the
technique described is successful in easily
demonstrating real time performance of over one
million agents, the framework is restricted to a 2D
lattice which makes the technique unsuitable for
3D simulation of continuous valued agents, such as
those presented in this paper.

3. AGENT MAPPING TO THE GPU
Most important to providing a library for ABM on
the GPU, is hiding the underlying graphical
concepts, the most obvious of these being texture
data storage. ABGPU uses an agent specification
as a means of generating a mapping function (F) to
allow agent scripts to directly access memory
variables without explicit knowledge of the
underlying storage mechanisms. Within the
mapping process agent variables are translated by
F into ‘2t’ textures, with dimensions of √N ×√N,
where N is the population size, containing up to
four variables (in each of the red, blue, green and
alpha channels respectfully). Similarly GPU
particle system implementations [13] agents can
then be processed in parallel by invoking a
fragment program to perform a read and write to
texture space on the double buffered agent data
textures, with the agent script being used to
generate the output data in between. Multiple
Render Targets (MRTs) allow the stacked textures
to be updated in a single pass when the OpenGL
Frame-Buffer Object (FBO) extension is used. One
significant point to consider is that FBO’s support
multiple render targets only when the multiple
textures are of the same internal texture format. For
this reason ABGPU allows only 32 bit float values
as agent memory, this limitation is expected to be
avoided in future releases, which will use more
direct access methods to GPU memory. Figure 1
demonstrates the mapping process of an agent
specification into agent space at position ‘i, j’. A
simple state machine represents synchronisations
after the communication algorithm, agent update
phase and rendering.

Figure 1 – The mapping of an agent specification into

agent space at position ‘i, j’.

4. AGENT COMMUNICATION
In order to allow the communication between
agents to take place, a partitioning scheme is used,
which splits the environment space into portions
equal to that of the communication radius of the
agents. This technique differs to that of D’Souza et
al. [1] in that the significantly smaller partition
space (with larger physical partitions) is used only
to hold the indices of the agents occupying the
partition rather than the actual agent data itself. For
agents to reference neighbouring partitions it
therefore requires the creation of a dynamic
partition structure, each with an unlimited number
of agents. This is achieved through first generating
a positional partition identifier for each agent,
along with a pointer to the agents position in 2D
(agent) texture space. This identifier is then used to
sort the pointers and reorder the agent data in order
to increase the cache hit rate during later stages. A
simulated scattering technique is then used to write
to the boundary partition matrix, which is used
during the update stage to determine the location of
neighbouring agents.

Bitonic GPU sorting has received a wealth of
interest in recent years leaving a good choice of
suitable sorting algorithms. GPUSort [14]
improves upon the performance of Purcels [15]
original implementation as well as the performance
of Kipfers [16] more cache efficient
implementation and has hence been used as the
basis for sorting within ABGPU. The improved
bitonic network (i.e. an improved parallel
comparison network for each rendering pass)
offers two significant advantages despite the same
O(nlogn) overall complexity of alternative
methods. The first of these is that the sorting
network enhances the GPU cache memory hit rate
by increasing the number of texture lookups in
close proximity. The second improvement is the

use of GPU blending functionality to perform the
sorting steps. These processes balance the GPU
much more than a pure fragment processor
implementation. In its original state the GPUSort
library is unsuitable for sorting non unique
identifiers, consequently it has been modified
slightly to allow this.

With the agents sorted by spatial partition it is easy
to see how agents are able to perform a linear
search between boundaries in order to consider
neighbouring influences. More difficult is
consideration of agents in neighbouring
boundaries; assuming that the start and end
position of agents within the sorted list can be
calculated for each spatial partition the agents can
perform a serial scan across agents with the same
partition identifier for its own partition and the 26
neighbouring partitions. The method used for
dynamically generating this partition boundary
matrix is adopted from rigid body particles physics
[17, 18] and requires scattering the first agent for
each partition into a 3D partition matrix. Within
ABGPU this is achieved by rendering N points (N
agent population size) each with a texture
coordinate between 0.5 and √N+0.5 in the x and y
dimension. Vertex texture fetching then allows
these coordinates to be used to lookup the partition
values which are compared to the previous agents
value to find the start of a spatial boundary. Rather
than each agent in the update stage performing a
linear search to find the end of each spatial
boundary this is performed in the same vertex
scatter program which scatters both the start and
end index (position in agent space) of agents, using
multi texture semantics, which can the be used to
iterate between the two agent space positions
during the update phase. To ensure that it is
possible to scatter to each position within the
partition boundary matrix a view port must be used
which enables an output size equivalent to that of
the partition boundary matrix itself. Using a
traditional graphics API this gives the option of
either rendering directly to a 3D texture or to
render to a stack of 2D textures. As portability and
performance is a key issue in ABGPU the 2D
texture method is preferable as 3D textures have
far less hardware support with no significant
performance advantage. For an interaction radius
‘i’ in an environment space ‘e’ between 0 and 1
all partition boundary values can be stored with a
2D texture of size ceil(√(1/i3))with an over
4 million total partitions within; allowed by the
maximum 2D texture size of 2048. Figure 2
demonstrates the complete steps of the algorithm
including the agent update. Texture space inputs
and outputs are indicated between each stage.

Figure 2 – Render passes and data bindings for a

single update step.

5. USING ABGPU
ABGPU uses a number of C/C++ classes as well as
an agent update script to create an AB simulation.
The agent update script has a C like syntax and can
be compiled with a C header file which contains
place holders for key communication functions.
Figure 3 demonstrates the simplicity of a simple
agent based script in which an agent moves
towards its perceived centre of the population. The
structure of the update script is that an agents
main function must be provided, which accepts an
agent structure and a GLOBALS structure as
arguments returning an agent structure. Upon
setting the agent update script through an instance
of an Agent Population class, any references
to agent variables under go the same mapping
process as any upload or download of agent data.
The placeholders FOR_EACH_AGENT_A and
END_FOR EACH are automatically replaced with
the appropriate nested loop for retrieving each
agent’s data within the specified communication
radius. The supporting C++ classes which are
required to generate an AB simulation are as
follows. Additionally a SceneVisualiser
header is included which sets up a basic 3D
viewpoint with mouse controls and basic point
rendering of agents. This of course can be modified
as in the case of the Boids fish example which uses
more complex agent orientation and swimming
animations.

Figure 3 – A simple agent script using ABGPU

scripting.

AgentSpecification – An agent
specification is required to determine the GPU
texture space required for agent data storage.
Agent specifications currently support up to 32
internal agent values on a DirectX 10 series card
with 8 MRTs, 16 values through 4 MRTs on most
DirectX 9 cards.

Agent – An agent requires an agent specification
and can be used to get and set values using the get
and set agent variable methods respectfully.

AgentPopulation – An instance of the Agent
Population class is responsible for the generation
of GPU shader code by translating the agent update
script into compilable cg code and by dynamically
creating code for the sorting and displacement
stages. Agent data can be set and retrieved by
passing an array of agents to the
AgentPopulations upload and download data
methods and the simulation can be stepped by
using the step or StepN (N being the number of
steps) methods. Global variables are controlled by
the agent population and can be got and set
between simulation steps. Included within the
global variables are a number of application
variables which are accessible by default. These
include the environment size, the agent data texture
size and the number of spatial partitions. An
additional distance sort method is also available
allowing the agents to be distance sorted by any
agent variable.

AgentFeedback – Agent feedback uses a
number of parallel reduction functions to provide
real time feedback of the agent population without

reading back the entire agent population data. An
instance of the AgentFeedback class can be
used in conjecture with a number of
FeebackVariable instances. Figure 4
demonstrates the C++ code for providing two
feedback values of type FEEDBACK_MAX and
FEEDBACK_SUM respectively.

Figure 4 – An example of Agent Feedback using two
FEEDBACK_MAX and a single FEEDBACK_SUM

FeedbackVariable.

Additionally there is also a FEEDBACK_MIN and
FEEDBACK_COUNTN feedback type. The
COUNTN can be used to count all occurrences of
the value N across the agent population.

6. BOIDS MODEL
The Boids model used to demonstrate the
functionality of ABGPU is adapted from Reynolds
original model [2] with the introduction of a goal
rule, which is implemented using global variables.
The agent specification consists of seven variables
and x, y and z component for both position and
velocity and a LOD variable used to hold the
agents current detail level. The global variables
controlling the goal point are potentially set after
each simulation step by considering random
variables. If this variable is below some threshold
the goal point is moved to a new position within
the environment bounds. Global values are also
used to control agent interaction though the setting
of a number of weights which control each of the
Boids rules. The ultimate behaviour of the Boids is
determined though a steer vector which is the
summed weight of each rule which is also bound to
a maximum threshold to preserve a maximum
speed within the simulation. A simple menu
system is used to control the rule weights, which in
turn affect the behaviour in real time.

Rendering of the fish is achieved through two
methods depicted in Figures 6 and 9. The first
(Figure 6) uses the same technique as the inbuilt
primitive point rendering, where instead of a point
a low polygon count (66 faces) model for each fish
agent is rendered into a single display list. As with
the vertex scatter multi texture coordinates are used

FeedbackVariable variables[2];

variables[0].feedbackType = FEEDBACK_MAX;
variables[0].feedbackVariable = "agent_pos_x";

variables[1].feedbackType = FEEDBACK_SUM;
variables[1].feedbackVariable = "agent_pos_x";

AgentFeedback feedback = new AgentFeedback(2,
variables, agent_population);

float2 feedbackData;
feedback.getFeedback(feedbackData);

to provide both visual texture map lookup values
and lookup cords for the fish data in agent space.
For higher resolution agent representations (Figure
10), rendering the entire population into a single
display list is not an option as the memory
requirements soon escalate. Additionally, to use a
dynamic LOD system the number of each fish at
each detail level changes continuously dependant
on the user viewpoint and fish behaviour. In order
to provide a high detail simulation the Boids
update script uses global values for the eyes x, y
and z position to calculate a detail level dependant
on the agent position. The three decreasing detail
levels of either 0, 1 or 2 (Figure 5) are then
counted using three FEEDBACK_COUNTN
feedback variables. With the total number of each
detail level know the agents are then sorted by the
LOD value so the CPU can draw the correct
number of LOD models in order. Display lists are
again used to improve performance, however a
display list is used for each model at each detail
level reducing the CPU to GPU communication to
a single display list call for each agent in the
system.

Figure 5 - A population of 16384 agents with

rendered with the LOD system. Red, Green and Blue
colours represent three detail levels 0, 1 and 2

respectively.

Animation of the fish is achieved through the use
of a vertex shader. This uses texture indices passed
from the agent population to allow the agent data
to be used to first offset the agents to the correct
position, and then orientate vertices and normals
about two dimensions with a restriction on positive
and negative vertical inclination. Finally the same
vertex shader is used to provide some animation of
the fish bodies with the body being displaced along
its length through a sine wave giving the effect of
swimming through the water.

7. RESULTS

Figure 6 – 65,536 Interacting fish Agents at 30 Fps

The results obtained are based on a single PC with
an AMD Athlon 2.51Ghz Dual Core Processor
with 3GB of RAM and a GeForce 8800 GT. As the
system performance is highly dependant on the
complexity of the behaviour, the number of agent
variables and the agent communication radius,
comparisons with previous work are limited to that
which most closely resembles the work in this
paper. Despite the difference in underlying
hardware both Reynolds [12] and Erra at al. [10]
describe systems of agents in continuous valued
3D space and are consequently the most suitable
for any direct performance comparisons.

Figure 7 shows the recorded performance of the
Boids implementation with the varying colours
representing variable communication radii in an
environment clamped between the range of 0 and
1. The Fps readings were obtained after the
simulation had run for some time allowing any
local groups to form and to avoid influence of the
Boids initial random positions and velocities. The
performance results are capped at 200 Fps and not
all values of communication radii attempt to
simulate the larger population sizes. With an
interaction radius of between 0.03125 and
0.0078125 it is possible to simulate 65536 Boid
agents at 60 Fps. Erra et al. [10] simulated the
same number of agents at less than 5 Fps. The
system presented in this paper is, instead, able to
render up to a million agents at 5Fps without
visualisation, although it has to be noted that the
simulation can only sustain this rate when the
weight of the single goal rule is significantly small
enough to allow multiple local groups to form. It
must also be noted that Erra et al. [10] simulated
interaction with 5 static scene objects and one
dynamic one, which currently is not done in this
simulation. Such behaviour will be incorporated at
a later date through the use of global variables.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220

0 200 400 600 800 1000 1200

Sqrt Agent Population size

FP
S

0.0078125
0.015625
0.03125
0.0625
0.125
0.25

Figure 7 – Recorded performance with x axis representing the square of the population size and the y axis

representing Fps recorded over multiple frames.

It is surprising how little effect rendering the
population using both the point primitives and low
polygon count models has on the performance of
the system. In most cases a maximum of 5-10 %
drop in frame rate is observed however with
populations over 16384 the performance of the low
polygon model rendering is reduced further. In fact
with a communication radius of 0.03125, 65536
agents can be rendered as simple fish sustaining 30
Fps (Figure 6) and as point sprites at 50 Fps. In
contrast this is substantially more than the reported
performance of previous work, the most impressive
being Reynolds [12] reporting 10000 agents at 60
Fps. When rendering using higher resolution
agents with LOD system, the performance is
obviously reduced due to the additional feedback
and sorting stages performed before rendering (this
effect is demonstrated by figure 8). Despite this,
16384 agents with a maximum detail level of 1500
polygons can be rendered at over 30 Fps. The
majority of the performance slowdown is attributed
to the secondary sort rather than the LOD feedback
which makes little overall performance difference.

0

50

100

150

200

250

262144 65536 16384 4096 1024 256
Number of Agents

FP
S

No Feedback
Feedback
Feedback & Sort

Figure 8 – Performance effect of agent feedback with

a communication radius of 0.03125

As rendering is achieved with such high
performance in all but the most extreme cases the
agent update step is clearly the performance
bottleneck of the system. In order to overcome this
both Reynolds [12] and Erra et al. [10] avoided
performing the full agent update step for each
animation frame. Reynolds [12] simply decoupled
the simulation and rendering stages with 1/8th of
the population being updated per rendering frame,
whilst Erra et al. [10] used the earlier mentioned
scattering matrix to vastly avoid recalculation
when the flock was uniform. AGBPU does not
implement either of these techniques and therefore
it can be though of as considerably more brute
force with this respect.

Arguably the most significant difference between
ABGPU and that of both Erra et al. [10] and
Reynolds [12] is the neighbourhood heuristic and
consequently the number agents considered for
communication. Both implementations favour an
N-Nearest neighbour solution in opposition to the
communication radius technique used within this
work and that of the original Boids paper.
Additionally ABM GPU work by D’Souza[1] and
collision only based particle physics
demonstrations by Green [18] perform
significantly fewer communications than the agents
described in this paper. In the case of D’Souza [1]
a real time performance of 2 million agents is
reported however agents are placed within a 2D
lattice with only a 9x9 vision filter. The performance of
Greens [18] physically based particle demonstrations
which use the same boundary scatter technique are
slightly higher than our own results (most likely as
a result of utilising the CUDA radix sort which
limits the algorithms to G80 hardware) however
the ridged particle and partition size vastly reduces
the number of particles considered during the more

simplistic update stage. Figure 9 shows both the
number of agents considered for communication
(Lookups) and those which are actually within the
agents interaction radius and are hence
communicated with. The results of this were
obtained by using a communication radius of
0.0625 after 1000 iterations of the simulation.
From this the efficiency of the spatial partitioning
method can be considered, and on average is
roughly 1/3rd, a figure far superior to that of the
worst case all pairs solution which is the only
other method which guarantees all interactions. In
cases where hundreds of agents are serially
considered during the update stage it is surprising
the system is able to sustain real-time performance.
This is attributed to the fast cache of the 8800 GT
card and the displacement of agent data after the
sort stage which increases the cache hit rate and
dynamic branch coherency between pixel quads.

N Max Min Sum Average
262144 16334 0 851476608 3248
65536 4244 0 61600140 940
16384 1530 0 5409149 330
4096 253 0 246636 60
1024 44 0 10726 10
256 15 0 684 3

N Max Min Sum Average
262144 29461 0 2431892736 9277
65536 8862 2 163508320 2495
16384 2638 1 12541857 765
4096 526 1 653152 159
1024 131 1 32572 32
256 29 1 2071 8

N Efficiency
262144 35.0
65536 37.7
16384 43.1
4096 37.8
1024 32.9
256 33.0

Communications

Lookups

Figure 9 – Texture Lookup Performance of a single
frame with a communication radius of 0.0625 after

1000 iterations

8. CONCLUSIONS & FUTURE
WORK

In this paper ABGPU has been presented as a fast
efficient method of performing agent based
modelling. Whilst the current performances are
impressive the system would benefit from
additional functionality demonstrated in alternative
GPU work. The introduction of birth and death
allocation [1] on the GPU is the most favourable of
these, interaction with advanced or dynamic
environment maps [7] is also highly desirable.
Additionally the decision to sacrifice simplicity for
portability may be reconsidered by producing a
Compute Unified Device Architecture (CUDA)
backend which will avoid some of the restrictions
imposed by packing data into textures (most
notably the agent variable count). An advanced
extension to the current work could consider
scaling the algorithm to multiple GPUs either
within a single host machine or across a high

performance GPU grid. These will be the topics of
future work and will open ABGPU to a wider
range of models beyond the continuous population
systems which the current work has been so
heavily influenced by.

9. References
[1] - D'Souza, R. M. Lysenko, M. Rahmani, K. (2007),

SugarScape on steroids: simulating over a million
agents at interactive rates, Proceedings of Agent2007
conference. Chicago, IL

[2] - Reynolds, C. W. (1987), Flocks, Herds, and
Schools: A Distributed Behavioural Model, in
Computer Graphics, 21(4) (SIGGRAPH '87
Conference Proceedings) pages 25-34.

[3] - Collier, N. (2002), RePast: An Extensible
Framework for Agent Simulation

[4] - S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan,
Mason: A new multi agent simulation toolkit,
Proceedingso of the 2004 SwarmFest Workshop.

[5] - Minar, N. Burkhart, R. Langton, C. Askenazi, M.
(1996), The Swarm simulation system: a toolkit for
building multi-agent simulations, Working Paper 96-
06-042, Santa Fe Institute, Santa Fe.

[6] - Nyland, L. Prins, J. Harris, M. (2004), Rapid
Evaluation of Potential Fields in N-Body Problems
Using Programmable Graphics Hardware, Poster
Presentation, ACM Workshop on GPGPU, Wilshire
Grand Hotel, LA, California

[7] - Dronw, S. (2007), Real-Time Particle Systems on
the GPU in Dynamic Environments, ACM
SIGGRAPH 2007 course 28: Advanced real-time
rendering in 3D graphics and games, pages: 80-96

[8] -Quinn, M. Metoyer, R. Hunter-Zaworski, K. (2003),
Parallel
Implementation of the Social Forces Model, In
Proceedings of the Second
International Conference in Pedestrian and Evacuation
Dynamics (August
2003), pages 63–74

[9] - Adra, S.F. Coakley, S. Kiran, M.McMinn, P.
(2008), An Agent-Based software platform for
modelling systems biology, Epitheliome Project
Report, Sheffield University

[10] - Erra, U. Chiara, R. Scarano, V. (2006), An
Architecture for Distributed Behavioural Models with
GPUs, Fourth Conference Eurographics Italian
Chapter, pages 197-203

[11] - Chiara, R. Erra, U. Scarano, V. Tatafiore, M.
(2004), Massive Simulation using GPU of a
distributed behavioral model of a flock with obstacle
avoidance, VMV 2004, pages 233-240

[12] - Reynolds, C. (2006), Big fast crowds on PS3, In
Proceedings of the 2006 ACM SIGGRAPH
Symposium on Videogames (Boston, Massachusetts,
July 30 - 31, 2006). sandbox '06. ACM, New York,
NY, pages 113-121

[13] - Latta, L. (2004), Building a Million Particle
System, In proceedings of Game Developers
Conference, San Francisco, CA

[14] - Naga, K. Govindaraju. Raghuvanshi, N. Henson,
M. Manocha, D. (2005), A Cache-Efficient Sorting
Algorithm for Database and Data Mining
Computations using Graphics Processors, UNC Tech.
Report 2005

[15] - Purcell, T. Donner, C. Camarano, M. Jensen, H.
Hanrahan, P. (2003), Photon mapping on
programmable graphics hardware, in Proceedings
ACM SIGGRAPH/Eurographics Workshop on
Graphics Hardware 2003, pages 41-50

[16] - Kipfer, P. Segal, M. Westermann, R. (2004),
UberFlow: a GPU-based particle engine, In

Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Conference on
Graphics Hardware (Grenoble, France, August 29 -
30, 2004). HWWS '04. ACM, New York, NY, pages
115-122

[17] - Harada, T. (2007), GPU Gems 3: Real Time Rigid
Body Physics on GPUs, Addison Wesley, pages 611-
632.

[18] Green, S. (2007), CUDA Particles, NVIDIA
Whitepaper, November 2007.

Figure 10 – 16,384 agents with a maximum detail level of 1500 polygons rendered at over 30 Fps

