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Modelling complex biological systems using an agent-based approachw
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Many of the complex systems found in biology are comprised of numerous components, where

interactions between individual agents result in the emergence of structures and function, typically

in a highly dynamic manner. Often these entities have limited lifetimes but their interactions both

with each other and their environment can have profound biological consequences. We will

demonstrate how modelling these entities, and their interactions, can lead to a new approach to

experimental biology bringing new insights and a deeper understanding of biological systems.

Introduction

Traditional mathematical and computational approaches to

understanding biological systems concentrate on modelling

homogeneous populations of molecules, cells, or organisms

and calculating change over time, but without an appreciation

of what is happening at the individual level. A complementary

approach is to focus on individuals—in all their variation—and

to explore what emerges from their interactions. Agent-based

or individual-based modelling provides a way of doing this, but

has been limited in the past by: difficulties of scaling the

models up to a realistic size; the typically ad hoc manner in

which models are developed and programmed; and the arbitrary

adoption of rules that seem to generate plausible emergent

behaviour. It is essential that the agents are both biologically

plausible as entities and that their behaviour is based on

experimental measurements.

The necessity for determining accurate parameters in agent-

based models is in contrast with traditional modelling techniques

which only require a small set of parameters to test specific

hypotheses. Testing of narrow hypotheses can clearly minimise

assumptions, but a major drawback is that the system effects

of variables outside the model’s parameters cannot be explored.

Agent-based models allow the identification of unexpected

emergent effects of previously unconsidered, or underestimated,

variables. By definition the emergent behaviour of complex

biological systems is highly unpredictable and unlikely to be

captured by a traditional modelling approach where hypothesis

testing assumes that the modeller has a clear idea of how the

system functions. Thus agent-based modelling represents
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Insight, innovation, integration

This paper explores a number of different biological

systems from a molecular level, cellular and tissue and also

the level of communities. In each case the research identifies

new discoveries—the role of actin filaments and Ik-B seques-

tration in cells; how correct levels of ArcA in aerobic–

anaerobic transitions in bacteria; the mechanics of wound

healing in tissue and the principles underlying ant foraging.

Using highly detailed agent-based models derived in close

partnership with experimental work provides significant

benefits. Experimentalists find this approach very intuitive

and enlightening. The paper describes projects where

biologists and modellers have worked together very closely.

The process is an iterative one and the models and data

gathering are closely aligned and benefit each other.
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a shift back to traditional scientific inquiry allowing us to

focus on asking specific questions about a system’s emergent

behaviour, but without blindly assuming we fully understand

the system being studied. We contend that traditional modelling

approaches require a full understanding of system properties

so as to make predictions about future behaviour, whereas

agent-based modelling facilitates the development of that

understanding.

We discuss here how a powerful software framework,

FLAME1 has been used successfully in a number of cases to

deliver new insights in biology. FLAME is the Flexible Large-

scale Agent-based Modelling Environment and it has been

developed to run very efficiently on both desktop computers

and massively parallel supercomputers. Biological systems are

highly complex and modelling them demands great computa-

tional power. They also need to be defined very carefully and

the basis of any model should be both transparent and

formalised as far as possible, and in a language that biologists

can understand. There is a growing requirement in systems

biology, and in experimental biology, that models and data be

made publicly available, so that critical review and independent

validation are possible. The FLAME specification approach

meets these requirements and is one of the key factors in the

success of this framework.

Modelling rationale

Multi-scale modelling is an essential approach to dealing with

complex biological models where certain aspects of the model

need to be represented at higher levels of detail and inter-

related with other parts of the model that involve components

or aspects which can be modelled at a lower level of detail. Our

approach has been to use a high-level representation of

functions (rules) for speed and simplicity, and introduce the

details of the mechanisms that are involved only when this is

necessary in order to examine the effect of changes in, for

instance, a particular signalling pathway. In principle, an

agent-based approach can be used at any level from the whole

organism down to the molecule, thus generating emergent

behaviour at all levels. The representation of the agents as

X-machines is very general, so any function within the X-machine

could be substituted by another X-machine which calculated

the function, thus generating a hierarchy of X-machines at all

levels. Whilst this is conceptually feasible (and even attractive!), it

is neither practicable nor desirable to build a complete model

of an organism in molecular detail. Some method of abstracting

away detail between levels is essential for computability, and

there are also cogent arguments for making use of models

developed by other research groups.

We therefore developed the means for incorporating models

described in CellML, SBML, or as sets of differential equations.

Our aim was to devise a generic modelling technique which

enabled sub-cellular signalling pathways to be easily imported

and plugged into an agent-based representation of a cell. To

enable wide applicability, we have adopted a modular and

flexible approach to link our agent-based modelling environ-

ment FLAME with existing tools such as COPASI2 and JSim.3

As the functions of an agent modelled using FLAME can be of

any desired complexity, linking FLAME (http://www.flame.ac.uk)

to such existing tools (COPASI and JSIM) was realised by

providing wrappers that can be used by an agent’s function to call

COPASI or JSIM and request them to simulate a certain

sub-cellular model specified in any of the modelling languages they

support (e.g. CellML (www.cellml.org), SBML (sbml.org) and

MML (nsr.bioeng.washington.edu/jsim/)). The main advantages

that are provided to us by interfacing FLAME with COPASI and

JSIM include:

� the ability to reuse curated and widely available models

� the ability to import sub-cellular models specified in

widely used modeling languages such as SBML or CellML

� the ability to connect agent-based models of cellular behaviour

(micro level) to mathematical (continuum) models of whole tissues

or organs (macro level) and sub-cellular signalling pathways and

biochemical networks (sub-cellular level)

� the facility to connect agent-based models to widely used

ODE and PDE solvers and

� the promotion ofmultiparadigm andmultiscale computational

modelling.

COPASI (Complex Pathway SImulator) is a software

application for the simulation and analysis of biochemical

networks. COPASI provides the following main features:

stochastic and deterministic time course simulation (ODE

solver); metabolic control analysis/sensitivity analysis; optimi-

zation of arbitrary objective functions; parameter estimation;

import and export of SBML; ODE Solving Capability; and a

command line version for batch processing. The individual

agent is defined using a markup language (XMML {X-Machine-

Markup Language). In the environment tag, a data structure

called ‘copasi data’ is defined to encapsulate the data that will be

used by COPASI (for instance, the name and concentration of a

metabolite). The user-defined data structure ‘copasi data’ is then

used in the agent’s memory. The initial values are provided in the

initialization file (an xml file). More technical details about

FLAME, and FLAME/COPASI can be found on http://www.

flame.ac.uk and http://www.imagwiki.org.

FLAME/COPASI allowed us to develop a 3D, multiscale,

agent-based model of the human epidermis and to model the

re-epithelialisation process.

The same approach has been used to link FLAME and JSim.

JSim is a software application for the simulation and analysis of

biochemical networks. JSim provides features similar to the ones

provided by COPASI, but in addition has the following valuable

features: the ability to import CellML models as well as SBML

models; the ability to solve PDEs as well as ODEs, and auto-

matic balancing and checking of units.

We will look at a number of specific cases of the application

of the FLAME approach: starting with models at the molecular

level where the agents are key molecules in a specific cell; then we

look at an example of tissue modelling where agents are cells in a

section of tissue; and finish with an example where agents are

individual organisms in a colony of social insects.

1. Models of the innate immune system—the NF-jB
pathway. The agents in this model are key molecules and

receptors associated with specific parts of the cell. These are

all represented as agents and are of varied types and in some

cases short lived. For a biochemical pathway, this means that

anything from a molecule to a signalling receptor to an entire
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chain of interactions can be modelled as an agent, thus providing

a modular and extensible modelling framework that allows

abstraction of detail as necessary. In this model,4 each relevant

molecule is modelled as an agent which can move around the cell

and interacts with other molecules under suitable conditions.

Thus these molecular agents diffuse through the cell, binding and

dissociating from other molecules, receptors and cell structures in

accord with the circumstances pertaining at that precise

moment—this depends on their history, current state, what they

detect about their immediate surroundings such as the presence

of other potential interacting agents and so on. This information

is conveyed through signals they send and receive from surrounding

agents. Every agent has an internal memory that contains its

physical location and other important information. This is critical

from the computational point of view since the number of states

required to model the system is then manageably small. In the

model molecular interactions are local events that depend only on

the position and current state of the molecules involved, such as

whether it is already bound to another. The physics of a molecule is

modelled according to specific agent-based characteristics, which

include the types of interaction that are possible. For two molecules

to interact according to these rules, they must satisfy criteria on

their state and proximity, derived from standard rate constants. If

interaction occurs, the state of each agent changes to a ‘bound’ state,

which can be reversed through random thermal separation (Fig. 1).

Fig. 2(a) illustrates the different agent types—the toll-like and

IL-1 receptors of the TIR-family are special molecules located on

the cell membrane. They are stimulated into action through the

influence of specific ligands constituting bacterial components or

a cytokine called interleukin-1, released when the body detects

infection or inflammation, and are specified in XMML. There

are also receptor molecules, which recognise and dock the

NF-kB transcription factor at the nuclear pore for transport

into the nucleus where it is able to ‘turn on’ a number of special

genes that lead to the production of proteins that are the response

of the cell to the infection. The other agents are the key molecules

such as IKK and IkB in various forms. The model then imple-

ments the various chemical reactions that take place between

these agents. There are several thousands of each these agents

and the simulations try to faithfully represent what is known

about this complex series of reactions.

Using single cell data, the model demonstrated remarkable

agreement with the experimental data. It also allowed us to

investigate local activity. In particular, we could represent elements

of the cytoskeleton such as actin filaments in the model (Fig. 3).

Experimental data indicated that there is a mismatch

between the amount of IkB in the cell and the amount needed

for the NF-kB pathway. Using the model, we tested a hypothesis

the surplus was sequestered in the actin filaments under

normal conditions, and this was experimentally validated.5

2. Oxygen metabolism in aerobic-anaerobic respiration in

Escherichia coli. The Bacterium Escherichia coli is one of

biology’s key model organisms. It is probably the best

characterized bacterium and E. coli research has provided many

of the fundamental paradigms that underpin our understanding

Fig. 1 The whole inflammatory network, including NF-kB to the left, GTP-ases and the MAP kinase cascade in the centre and structural

components involved in mechano-transduction to the right. [Qwarnstrom private communication].
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Fig. 2 Formulation and validation of the agent-based model. (a) Simplified diagram of the principal pathway agents in the model. Each agent can

exist in a number of states. (b) Three-dimensional visualisation of the positions of agents in the model at a moment in time. The cell is scaled down

to reduce computation, containing in the order of 1000 agents. Concentrations of molecules are based on biological data. The genes that NF-kB
can activate are placed randomly along a line at the centre of the nucleus. (c) Images of single cells transfected with ECFPrelA and IkBaEYFP.

Prior to stimulation, both components are located in the cytoplasm (top row). Following pathway activation, NF-kB translocates to the nucleus

whilst IkBa and NF-kB-IkBa complex levels fall. (d) Quantitation of single cell data as in (c) (left graph) and model results (right graph) following

TIR activation over the same time period. Results are for a single cell, and demonstrate fundamental similarities with experiment.5
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of biology. E. coli, is a model research organism for numerous

reasons. It is relatively easy for biologists to use and has been

studied for many years. It is probably the most genetically and

metabolically defined organism known. Most strains are not

pathogenic to humans (they exist in gut flora) but a few cause

serious disease e.g. E. coliO157:H7.Escherichia coli is biochemically

versatile and unlike many organisms can thrive in environments

either with abundant oxygen (O2) or no O2.
6 The ability to sense

and respond to changes in O2 availability is necessary for E. coli to

successfully compete in a range of niches, including during infection

and when used as a ‘‘cell factory’’ in biotechnology.

Experimental work with E. coli involves the use of Chemo-

stats: bioreactors that control and measure all key operating

conditions, including growth rate under strictly defined conditions.

Chemostats allow the measurements of transient properties

(metabolite levels, fluxes, H+/O ratios, QO2
, etc.) to be per-

formed in standardized ways that can be replicated in different

laboratories.

This is the focus of the Systems Understanding of Microbial

Oxygen (SUMO) project, a multi-national project in the

Systems Biology of MicroOrganisms (SysMO) initiative.

Oxygen availability profoundly affects E. coli bioenergetics,

and through the synthesis of alternative electron transport

chains E. coli exploits any available O2 to support aerobic

respiration—the most energetically efficient mode of

growth.7,8 Thus, E. coli has two well-characterized alternative

terminal oxidases; Cyd has a very high affinity for O2 and is

used under micro-aerobic conditions, whereas Cyo has a

relatively lower affinity for O2 and is used under normoxic

conditions (Fig. 4). The synthesis of these alternative oxidases

is regulated by two main transcription factors: the fumarate and

nitrate reduction regulator (FNR) and the two-component

aerobic respiratory control (ArcBA) system (reviewed by

ref. 9). These regulators can sense changes in O2 availability—

FNR is a direct O2 sensor, whereas ArcBA senses O2

indirectly10,11—to re-programme gene expression such that

the most appropriate electron transport chain is synthesized

in any particular niche. Hence, in the absence of O2, expression

of cyo is repressed by FNR and phosphorylated ArcA

(ArcABP), whereas expression of cyd is also repressed by

FNR but activated by ArcABP (Fig. 4). Furthermore, the

primary signal for switching ArcBA and FNR off (O2) is

consumed by the terminal oxidases, forming a negative feedback

loop (Fig. 4). Thus, the activities of FNR and Arc are the

primary determinants of the extent to which each oxidase is

synthesized, but measuring these activities experimentally is

technically demanding. Therefore, it was argued that multi-scale

and multi-level modelling could reveal new insight into the

operation of this important regulatory circuit. The flexible

agent-based supercomputing framework FLAME provided the

basis for the integration of three complementary modelling

approaches: kinetic, reduced-order kinetic, and agent/hybrid

modelling (Fig. 5). Each of the modelling approaches contributes

by addressing questions that are difficult to incorporate within a

single modelling framework.

Thus, the activities of FNR and Arc are the primary

determinants of the extent to which each oxidase is synthesized,

but measuring these activities experimentally is technically

demanding and thus accurate models play an important role

Fig. 3 The actin filaments are represented here, for the sake of clarity, as straight lines.

Fig. 4 The basic relationships, both excitatory (+) and inhibitory

(�), between the transcriptional regulators (FNR and ArcABP), the

genes encoding the alternative oxidases (cyd and cyo) and the oxidase

proteins (Cyd and Cyo). The transcription factors are switched off

when oxygen (O2) is abundant, allowing maximum expression of cyo

(FNR and ArcABP no longer repress expression) and basal level

expression of cyd (FNR no longer represses but ArcABP does not

activate). When intermediate amounts of O2 are available ArcABP is

able to activate expression of cyd, leading to maximal cyd expression

under micro-aerobic conditions. In the absence of O2 both FNR and

ArcABP are active and expression of cyd and cyo is repressed.

Reduction of O2 to H2O by the terminal oxidases affects the level of

signal perceived by the regulators.
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understanding what is going on. Each of the modelling

approaches contributes by addressing questions that are difficult

to incorporate within a single modelling framework, Fig. 5.

In the model, Fig. 6, each individual molecule is represented

as an autonomous agent that exists within the cellular environ-

ment and interacts with other molecules according to the

biochemical situation. The specification of each of these agents

is defined in the XMML language. The numbers of such

molecules in a typical cell are known—between 5000 and

10 000 for all of the proteins of interest. Molecules each have

a location within the cell. Some, such as the oxidases, are

located at the cell membrane, whereas others, like the regulators,

are more uniformly distributed. Each agent communicates

with the others via message passing that includes information

about where each molecule is and what state it is in. Molecules

can move through 3D space in the cell and interact with each

other when close enough and in a suitable state. Molecules

move differently in different regions of the cytoplasm and this

was modelled by controlling the movement of agents in the

different areas and changing their location by Brownian

motion (random movement of particles suspended in a fluid)

where appropriate. The agent-based model must of course

agree with the corresponding reaction kinetics model in the

circumstance where reaction kinetics can reasonably be applied

(i.e. with large numbers of molecules of well-mixed chemicals).

Since information about reacting chemicals is invariably given

for such a situation, and because little information exists about

individual molecular interactions, it is important that the necessary

data for the agent-based model can be inferred from reaction

kinetics. The interactions with O2 molecules have been

modelled by interpreting the k rate in terms of interaction

radius. The rate constant can now therefore be used to deduce

information on local interactions. Disassociation was dealt

with by applying a probabilistic k rate. Dissociation can easily

be accounted for by making bound products separate randomly

at a rate specified by the dissociation rate constant (using a

uniform random distribution initially, though this could be

modified as appropriate). Although this is straightforward, it

may be an unnecessary consideration since the rate of dissociation

is often negligible. Both k rates have been collected from

literature and experimental biologists.

Multiple binding of agents are added to reaction to deal

with several chemical reactions, each molecule agent can seek

interaction with several relevant types of molecule, with the

appropriately sized interaction radius for each type.

Three experimental measurements formed the basis of the

model viz. the abundances of the oxidases Cyd and Cyo, the

relative activity of the FNR protein in E. coli cultures grown

under conditions of different O2 availability. Using these

inputs the model was able to closely match the experimental

measurements and predict the activity of ArcA in the system

(Fig. 7). However, the predicted ArcA activity did not match

ArcA activity predicted from measurement of transcription

from an ArcA-regulated promoter.12 One possibility was that

a third O2-responsive transcription factor might operate

alongside FNR and ArcA to regulate both oxidases. Alterna-

tively, the indirect nature of measuring ArcA activity using a

reporter fusion could lead to inaccuracies. Therefore, new

experimental data directly measuring ArcA phosphorylation

was obtained and was found to match the model predictions

very closely—see Fig. 7. Thus the simulations contributed to

clarifying and correcting the current knowledge about the role

of this important regulatory circuit. E. coli has to be able

to change its metabolism to survive. The presence/absence of

O2 is a key signal during E. coli infection. E. coli is used as a

Fig. 5 Experiment-modelling cycle.

Fig. 6 The hybrid model architecture for the E. coli model.
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‘‘cell factory’’ for making many drugs & chemicals and oxygen

concentration is an important factor that affects yield.

The enzymes in the two pathways are regulated by two main

transcription factors:

The fumarate & nitrate reduction protein (FNR) and the

two-component anoxic redox control (Arc) system. These

regulators can sense oxygen levels (Arc does this indirectly)

and enzymes are activated/repressed in the respective path-

ways to utilise the most energy as possible from glucose.

Understanding the synthesis of alternative oxidases in

E. coli can only be efficiently understood using multi-scale

and multi-level modelling. We have integrated three different,

complementary modelling approaches: kinetic, reduced-order

kinetic, and agent/hybrid modelling. Each of the modelling

approaches contributes by addressing questions that are difficult

to incorporate within a single modelling framework. The flexible

agent-based supercomputing framework FLAME provides the

basis for this integration.

We emphasise the importance of both modularity and the

integration of the system. Biological complexity requires us to

break our systems into manageable components, but it also

requires us to reassemble them because behaviours can emerge

that we cannot understand from the components alone. The

resulting models can provide predictions, be used as a scaffold

for our emerging understanding of the data and identify gaps

in our biological knowledge. Each component has used different

modelling techniques that depend on the availability of biological

data. The model has been extensively validated under controlled

experimental conditions.

Some of the key ways in which the FLAME-SUMO model

has been used is in the estimation of important kinetic

parameters in these reactions. For example rate constants

and concentrations cannot always be measured directly and

the agent-based model provides a vehicle for experimenting

with these values and then comparing the results with the

experimental data derived from the chemostat experiments.

The agent-based models have also been used to estimate the

level of resources needed by the colonies in order to reach a

steady state in a way that may not be possible with other types

of modelling.

3. Epithelial tissue and wound repair. This is now moving

up the scale to the tissue level where we are investigating how

groups of cells interact and form structures and evolve key

functions in organisms. Here we are working to essentially

model the social interactions between cells in both the bladder

and in skin.14–18 As in the other work the experimental work

takes place within the biology labs and tissue engineers and

modellers working together very closely. The agents in this

case represent different cells and are validated against data

obtained from the tissue culture models.

Some of the key issues that needed to be addressed related

to the division and migration of cells within a population,

since these are fundamental concepts in the growth and repair

of epithelial tissues. Each cell has a fundamental cell cycle that

underpins cell growth and division, or provides alternative

routes for specialisation (differentiation) and death (apoptosis).

Progression around the cell cycle is affected by interactions with

other cells, either through direct cell–cell contact or indirectly

through the release and detection of soluble signalling factors,

which may have a profound effect on behaviour. All of these

factors have to be modelled.

Fig. 7 A comparison between experimental results and the model predictions. 6(d) shows the disparity between the model predictions and the

original experimental data.13
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When a cell grows during the cell cycle (Fig. 8) it needs more

space in which to sit—where multiple cells in a tissue are also

changing their size the agent model needs to deal with the

conflicts whereby two cells might be overlapping—a situation

that cannot happen in biology. Thus at the end of each

iteration there has to be a stage where the calculation of the

physical forces exerted by the cells on each other is calculated

and the cells moved so that none overlap. When a cell has

reached the point where division is the next step the model has

to check whether there is physical space for the two daughter

cells to occupy. Contact inhibition is checked in G1, and

disables the cell from progressing to division (instead, a

counter ‘‘contact_inhibited_ticks’’ is incremented, and after a

while in such state, the cell might commit). Without dealing

with these fundamental issues of space and physics the model

would have no credibility with biologists.

The novel modelling technique encourages different types of

questions to be asked of the biology and thus encourage fresh

perspectives and new results. Already new light has been thrown on

tissue repair by demonstrating that for skin cells to repair stem cells

need to be distributed throughout the wound area, see Fig. 9.15,16

The model was then used to investigate the relationship

between cell migration and proliferation during epidermal

wound healing at the cellular level and the actions of TGF-

b1 on different keratinocyte populations at the sub-cellular

level, see Fig. 10.17,18

In virtuo investigations indicated that both cell proliferation

and migration are crucial for re-epithelialisation, suggesting

delicate mechanisms to coordinate the behaviour of different

keratinocyte populations. Further model analysis found that

TGF-b1 played a positive role in epidermal wound healing by

coordinating the behaviour of these keratinocyte populations.

4. Foraging strategies in ant colonies. Many social insects

exhibit sophisticated mechanisms of co-operation which gives

them an advantage in highly dynamic and challenging environ-

ments. A fundamental requirement for insect societies living in

a central place is the discovery and efficient exploitation of

food sources. We investigated the foraging activities of the

Pharaoh’s ant, Monomorium pharaonis, a small tropical ant

species which is a highly successful pest species infesting

buildings on every continent except Antarctica. Pharaoh’s

ants live in colonies of up to 2500 individuals but the colonies

reproduce by budding off satellite colonies nearby leading to

massive local populations numbering in the millions. There is

no aggression between neighbouring colonies. It is normally

suggested that this is because nest-mate recognition is absent,

but in fact budding means that contiguous nests are closely

related so they behave as a single massive colony. Pharaoh’s

ants are small (2 mm) and virtually blind. They organise their

foraging activities using chemical communication to produce

pheromone trails.

Fig. 8 The basic cell cycle.

Fig. 9 The role of stem cells (blue) in healing wounds—(a) represents a

situation with few stem cells in the wound area and (b) is the outcome;

(c) and (d) show the effect of a more uniform distribution of stem cells.
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Forager ants collect food and bring it back to the nest to

feed the larvae, queens and other ants. This is the critical

activity upon which the survival of the colony depends. Since

food is often an ephemeral resource foraging communication

has to be flexible to adapt to changing local circumstances.

Ant pheromone trails provide an effective and efficient

solution to the problem of locating and exploiting available

food resources. After finding food ants lay chemicals in a trail

from the food source to the nest providing positive feedback

which recruits other ants to exploit the food source. The

pheromone also acts as a chemical orientation signal to guide

other ants.19 Thus recruitment and orientation are coupled in

a single signal. The pheromone will decay or evaporate over

time if it is not reinforced providing a negative feedback signal.

Thus when a food source is exhausted ants will cease to be

recruited to the decaying pheromone trail.

This seemingly simple feedback system has been the inspira-

tion for a number of algorithms for solving complex computa-

tional problems. These algorithms are based on a superficial

understanding of the biology. It is interesting to note that ant

algorithms are generally applied to classical NP complete

problems, which are very different to the classes of problems

the ants are solving. Bio-inspired algorithms are tested on

problems like the Travelling Salesman Problem but this is

essentially a static problem, where the towns to be visited do

not move, appear or disappear. However ant trails typically

solve dynamic problem where it is imperative that foraging

activity can rapidly be switched from one resource to a better

one, and that exhausted or poor resources be abandoned.

Ant colonies contain diverse individuals where different

castes of workers perform specific roles. I the Pharaoh’s ants

these heterogeneous agent communities contain general foragers

but also a behavioural caste responsible for scouting known as

‘pathfinders.20 Pathfinder ants explore the environment and

discover food sources but have special access to long-lived trail

pheromones which allows them to inspect trails which have

proved rewarding on previous days. All foragers can access

short-lived pheromone trails which only last for minutes. In the

Pharaoh’s ant approximately 17% of the colony are pathfinder

specialists. The use of multiple trail pheromones allows Pharaoh’s

ants to switch rapidly to high quality food sources when they are

discovered.21

A notable discovery facilitated by agent-based modelling is

that Pharaoh’s ants produce trail networks with a treelike

structure.19 The branches of this network have a mean bifur-

cation angle of 54 degrees, and this branching structure

conveys important information to the ants. Simulations of

foraging ant colonies prompted a new hypothesis of ant

orientation in trail networks which was confirmed by extensive

experimental observations.20 The information provided by

trail bifurcations allows ants to determine the direction they

are heading in a trail network. Thus if an ant is fed it should be

walking towards the nest and only experiencing walking into a

bifurcation, whereas an unfed ant should only experience the

choice provided by encountering bifurcations. When an ant

becomes disorientated and rejoins a trail network it can

correct its course after passing through bifurcations. Experi-

mental evidence showed that unfed ants can still detect

bifurcations when they are returning to the nest which shows

that they can smell the difference in conformation provided by

the changing chemical topology of a bifurcation. It is not

simply the case that unfed ants expect choices and respond

accordingly when they are absent. Experimental evidence

showed that unfed ants walking into a bifurcation towards

the nest corrected their course shortly afterwards. Likewise fed

ants meeting the fork of a bifurcation indicating they are

heading away from the nest also corrected their course. Course

corrections were observed in over 50% of experimental trials

and corrections were optimised when the bifurcation angle

approached the natural angle of 50–60 degrees. Fig. 11

illustrates one of the laboratory set-ups.

Simulations using FLAME have provided considerable

insight into the way ant foraging trail networks work. The

importance of U-turning behaviour by specialists on ant trails

Fig. 10 (a) In virtuo investigation of the influence of TGF-b1 on epidermal wound healing at the subcellular level. The virtual wound with normal

proliferation and migration rates were simulated for (A) 0, (B) 200, (C) 400 and (D) 800 iterations. (b) The cells with high TGF-b1 expression levels

in the Healed virtual epidermis—the stratified cells with relatively high expression level of TGF-b1 were labelled with yellow (A), In the integrated

model different colours were used to represent keratinocyte stem cells (blue), transit amplifying (TA) cells (light green), committed cells (dark

green), corneocytes (brown), provisional matrix (dark red), secondary matrix (green), basement membrane (BM) tile agent (light purple). Some of

the cells with a relatively low expression level of TGF-b1 were also illustrated using a simple thermal image (B).
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was tested in simulations and shown to greatly enhance the

speed with which new food discoveries were integrated into the

trail network (Fig. 12).21 Comparison with simulated ant

colonies lacking U-turning specialists demonstrated superior

foraging efficiencies in the U-turners. X-machine modelling

facilitated the development of sophisticated state-based

models of individual ant agents, allowing the expression of

the level of heterogeneity found in real ant societies. Models of

ant behaviour have previously treated ant societies as

composed of homogeneous individuals and our research

shows that such an assumption is an impediment to the

emergence of many colony-level adaptive phenomena which

confer huge advantage to ant societies. Further research is

addressing the micro-level of behaviour, by treating the in-

dividual deposition of the ‘drops’ of pheromone as agents with

a limited dimension and lifetime allowing highly detailed

modelling of trail behaviour. This level of detail, however, is

computationally challenging and requires the use of parallel

supercomputers.

FLAME is the only agent-based modelling framework

capable of producing parallelisable models. Any model written

in FLAME can be run in serial or parallel without any changes

done to the model. e-Science, i.e. running models in parallel, is

highly significant for progress in scientific research. If simulation

of models takes more than 1 h to run on a single machine, this

is very time consuming and costly. Therefore it is necessary to

attain results quickly. Further, in agent-based modelling

models can scale up exponentially depending on the number

of agents and the functions to be performed. FLAME handles

all these problems by accommodating large number of agents

running in time defined by only an order of minutes. This is

done automatically by FLAME which eliminates any manual

effort for the modeller.

Fig. 11 zLaboratory set-up showing Pharaoh’s ants forming a trail

bifurcation.

Fig. 12 (a) Trail geometry from a typical foraging network (b) experimental data testing variation of bifurcation angles and the ratio of correct to

incorrect orientations.

Fig. 13 Screenshot of a simulation of a realistically sized colony of M. pharaonis using a supercomputer.
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Fig. 14–16 show the processing times of our simulations on a

laptop (Sony) and a supercomputer (Iceberg) with different

number of cores. Processing times were reduced by six times when

we ran our model in parallel compared to serial on the grid, which

is extremely desirable for processing complex biological models.

Conclusions

In all of these examples a software framework is used which

enables very quick and detailed models to be constructed and

simulations to be run, visualised and investigated. The frame-

work, based on a dialect of the XML language, generates high

quality software codes in C which are optimised for running

on highly parallel computers capable of handling simulations

of millions of agents in 3 dimensional virtual worlds. The

approach enables the third perspective of in virtuo, alongside

in vivo and in vitro, to be part of the biologist’s toolkit and

provides a powerful approach for exploring biological

systems.

Agent-based modelling also promotes greater collaboration

and feedback between biologists and modellers. They are able

to develop the idea of biological systems as sets of natural

agents, such as molecules or cells, and conceptualise these

system components as machines with state, internal properties

and functions. A key step in this interaction is the production

of a visual model as early in the modelling as is feasible. This

greatly assists communication between biologists and modellers.

The model of communication between agents is readily under-

stood. The ease with which physical processes and other key factors

can be integrated into the FLAME framework is another benefit.

There are a number of key principles that need to be

observed if realistic models of biological systems are to

be achieved. Biological systems exist in a physical three-

dimensional world governed by the laws of physics. There is

a strong temptation by computer scientists to abstract away

some of these factors in order to make modelling and analysis

more tractable. This may impede useful insights into biology

since ignoring geometry and the real forces that dictate system

behaviour can be very misleading. The advantage of agent-

based modelling over traditional mathematical modelling,

such as differential equations, is that many of the key deter-

minants underpinning the emergence of complex system

behaviour are found in behaviour of individual molecules,

cells of organisms. Agent-based modelling enables us to under-

stand the emergent development of structure and function and

provides a deep understanding of biology. As the wise old

maxim states, we must appreciate that ‘the devil is in

the details’.
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