
Cellular Level Agent Based Modelling on the Graphics Processing Unit

Richmond, Paul
University of Sheffield, UK

P.Richmond@sheffield.ac.uk

Coakley, Simon
University of Sheffield, UK
S.Coakley@sheffield.ac.uk

Romano, Daniela, M.
University of Sheffield, UK
D.Romano@sheffiled.ac.uk

Abstract

Cellular level agent based modelling is currently
reliant on either sequential processing environments
or expensive and largely unavailable PC grids. The
GPU offers an alternative architecture for such
systems, however the steep learning curve associated
with the data parallel architecture has previously
limited the uptake of this emerging technology. This
paper presents a template driven agent architecture
(FLAME GPU) which provides a mapping of XML
model specifications and C language scripting to
optimised Compute Unified Device Architecture
(CUDA) for the GPU. Our work has been validated
though the implementation of a Keratinocyte model
which uses limited range message communication with
non linear time simulation steps to resolve inter
cellular forces. The performance gain achieved over
existing modelling techniques reduces simulation
times from hours to seconds. Furthermore the
improvement of simulation performance allows us to
present a real time visualisation technique which was
previously unobtainable.

1. Introduction

Agent Based Modelling (ABM) is a powerful
technique which is used to simulate group behaviour
from a number of simple interacting rules between
communicating autonomous agents. Within systems
biology ABM offers an alternative to using higher
level differential equations which fail to capture
important lower level interactions. Such interactions
are important to improving understanding of
biological models as they result in the observable
systems level emergent behaviour. An obvious
consequence of this bottom up modelling technique is
that simulating many individuals is computationally
expensive especially considering the scale of models
which are required to produce observable results.

Traditional ABM toolkits such as Repast 1, Mason 2
and Swarm3 are primarily aimed at a single CPU
architecture, and whilst they offer simple agent
specification techniques, their inherent lack of
parallelism seriously affects the scalability of models.
Alternatively frameworks exploiting parallelism [4]
have concentrated on coarse task level parallelism
targeted at processing clusters or grids. Whilst this
technique offers the potential to improve simulation
performance, such systems are expensive and
unavailable for the majority of AB modellers. In
addition to this, cellular models of tissue growth [22],
including the Keratinocyte model [19] which we use to
evaluate our own work, requires non parallel external
tools to solve inter cellular forces between simulation
steps. Whilst computationally expensive, physical
force resolution is essential in maintaining a physical
integrity. Without this stage critical biochemical
reactions during cell contact are likely to produce
abnormal tissue growth.

The trend towards the use of emerging hardware
architectures has been advantageous to many fields of
biological and physical sciences [1, 18, 21]. The
introduction of the Compute Unified Device
Architecture (CUDA) has simplified the previously
tedious process of mapping General Purpose
computation on the GPU (GPGPU) [8, 14]. Despite
this examples of ABM on the GPU are limited in
quantity and are typically examples of specific models
[3, 5, 16]. The most prominent of these includes the
work of D’Souza [5] which implements a discrete
Sugarscape model using a densely partitioned grid to
hold agent data. Whilst efficient, the grid based
implementation is however memory intensive and
suitable only for fine grained 2D or coarse grained 3D
environments.

1 http://repast.sourceforge.net/
2 http://cs.gmu.edu/~eclab/projects/mason/
3 http://www.swarm.org/

Although GPU programming has certainly become
more accessible, achieving optimal performance still
requires sound knowledge of the underlying hardware
architecture. Flexibility is an aspect of ABM which is
often overlooked specifically within GPU examples.
As with other specific examples such as molecular
dynamics [1, 18, 21], ABM requires tools for using the
GPU which are not only efficient but concentrate on
reusability and flexibility. The focus of this paper is
therefore to describe a data parallel framework for the
ABM on the GPU. Our work aims to overcome the
limitations of previous techniques including our own
previous work, [15, 16] to be suitable for parallel
cellular tissue modelling. More specifically our work
makes the following contributions.

1. An ABM framework: FLAME GPU is presented,
which uses formal agent specification techniques
with model validation and a simple extension
mechanism.

2. A technique for non linear time step modelling is
presented, which allows the implementation of
parallel physical solvers required for tissue
modelling.

3. The performance of existing tissue models is
massively accelerated reducing simulation time
to the point that real time 3D visualisation of
results is possible.

2. A Review of GPU Hardware

The speed of GPU hardware is attributed to the
architectural design. Unlike more generic and flexible
CPUs the GPUs architecture is task specific making it
highly optimised for stream programming
applications. Technically the GPU not only exceeds
the transistor count of modern CPUs, but a
significantly higher portion of transistors are available
for data processing, rather than data caching and flow
control [12]. In addition to this the GPUs memory
bandwidth exceeds that of system memory bandwidth
by roughly a factor of 10. Figure 1 demonstrates the
computational power of the GPU in direct comparison
with Intel processors.

The class of GPU hardware targeted by the work in
this paper is specifically limited to CUDA enabled
graphics cards. Whilst it is desirable to support a
wider range of GPUs the CUDA API allows access to
a hardware functionality not supported by older
generation cards and competing GPU manufactures.
More specifically the availability of local (on chip)
shared memory offers extremely fast parallel memory
access operations for threads within the same

multiprocessor. In addition to this local
synchronisation provides thread cooperation allowing
data caching through shared memory access.

Figure 1. Peak Performance of NVIDIA GPU

Hardware (Red) vs. Intel CPU Hardware (Blue).
Data from [12]

The GPU programming model is described in detail

in the CUDA Programming Guide [12] where it is
presented as a parallel coprocessor. The GPU device
architecture is described as Single Program Multiple
Data (SPMD) where the program, or kernel, is some
function native to the device and operating on multiple
parallel threads. In order to generalise CUDA to
multiple hardware implementations (with varying
parallel capabilities) the idea of a grid of thread blocks
is used to group threads. Whilst there is no global
communication between threads, threads within the
same block are able to cooperate by sharing
information through the use of fast on chip shared
memory. For each kernel execution the CUDA API
provides a template based mechanism for grid and
block size specification. Each block is then optimally
assigned to the underlying multiprocessor hardware
for parallel evaluation.

At a hardware level blocks are split into smaller
units of 32 threads called warps. Blocks are then
distributed amongst multiprocessors with the amount
of blocks per multiprocessor limited by either the
hardware specific maximum number of warps per
multiprocessor or resource limited by the total register
or shared memory usage per block. During execution
on the multiprocessor, warps are processed a single
instruction at a time which allows the multiprocessor
to switch between warps which are ready for
execution. This warp interleaving allows global
memory access latency to be effectively hidden
providing the multiprocessor can be kept busy with
non latent arithmetic instructions. As each instruction
across a warp is executed in parallel, any conditionals
branches between threads must follow the same path
to attain maximum performance. In the case of
divergent branches (or warp serialisations) between

threads, instructions must either be serialised or
multiple paths evaluated by every thread.

3. Agent Specification

Formal agent based specification is important
within agent based modelling as it allows a simple and
intuitive way of defining agents and their associated
behaviour. Rather than creating a new framework and
rewriting existing models, our work extends the
already established FLexible Agent Modelling
Environment (FLAME) [4]. The choice to extend
FLAME not only aids better collaboration and
understanding, but provides a basis for formal
validation and verification of code [17]. FLAME itself
is not a modelling platform instead it uses templates to
produce simulation code. Models are described using a
XML specification language (XMML) based around a
formal modelling extending Finite State Machines
(FSMs) concept called the X-Machine [6]. More
specifically, FLAME builds upon a smaller subclass of
X-Machines known as Communication Stream X-
Machines (CSXMS) [2]. Due to their design targeted
at streaming data, CSXMS are well suited for
integration within parallel systems. Within FLAME
agents are defined as a set of states with internal
memory. A transition function determines an agent’s
next state and performs internal memory updates. The
communication between agents is handled through the
use of messages. Rather than use a large
communication matrix [2] this is instead implemented
in FLAME by more flexible variable length Message
Lists.

One of the weaknesses of FLAME, resides within
the main template system which maps XMML model
specifications into compliable C code. The problem
with this technique is that when extensions are made
to the XMML language the template parser (XParser)
needs to be modified to handle the additional XML
tags. As the FLAME project is continually under
development and being extended by multiple research
projects we have defined an extendable system using
XML Schema. This parallels Object Oriented
techniques by allowing extensions to XMML to play
the role of subclasses from a base XMML definition
[20]. Through XML validation, model files can be
checked to ensure they contain syntactically correct
XML including element structure and value types. The
base XML class itself comprises of a modular design
of globally defined Complex Types. Figure 2 shows
the Schema definition for the base xagent element

which is referenced within the non extendible
xagents list element.

Figure 2 – XMML Schema definition of the

xagent element

In this example an xagent can be extended

though a new complex type which uses derivation by
extension. Figure 3 shows an extract from our
GPUXMML schema which imports the original
XMML schema under the ‘xmml’ namespace. This
allows redefinition of the xagent_type and
xagent element. The use of substitution groups
allows the new xagent definition to replace the
original producing valid XML code when run though
an XML valuator such as Xerces or the .NET validator
in Visual Studio.

Figure 3 – GPU XMML Schema extension of

the xagent element
Documents validating against our new XMML

schema are intentionally very similar to original
FLAME XML models. This enables a simpler
migration of old models to our newer syntax. The

<complexType name="xagent_type">
 <complexContent>
 <extension base="xmml:xagent_type">
 <sequence>
 <element name="type"
 type="xagent_type_options" />
 <element name="bufferSize"
 type="int" />
 </sequence>
 </extension>
 </complexContent>
</complexType>

<element substitutionGroup="xmml:xagent"
 name="xagent"
 type="xagent_type" />

<complexType name="xagent_type">
 <sequence>
 <element name="name"
 type="string"
 maxOccurs="1" minOccurs="1" />
 <element name="description"
 type="string"
 maxOccurs="1" minOccurs="0" />
 <element minOccurs="1" maxOccurs="1"
 ref="memory" />
 <element maxOccurs="1" minOccurs="1"
 ref="functions"/>
 <element maxOccurs="1" minOccurs="1"
 ref="states" />
 </sequence>
</complexType>

<element name="xagent" type="xagent_type">
</element>

<element name="xagents">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" minOccurs="1"
 ref="xagent" />
 </sequence>
 </complexType>
</element>

majority of minor changes are a result of
parameterisation of agent functions which were
previously not required in task parallel code. Both
message and agent, inputs and outputs, must now be
explicitly specified within XMML. In order to
maintain high performance, GPU memory is pre
allocated and as a result messages and agents require a
buffer size representing an upper bound on their
population size. The full XMML and GPUXMML
definition files are available online at
http://www.dcs.shef.ac.uk/~paul/FLAMEGPU.

To avoid the problems inherent with the XParser
we have defined our code templates using Extensile
Stylesheet Language Translations (XSLT). This
removes the dependency on a specific template parser
as any XSLT (version 1.0) compliant processor can
convert an XMML model file to compliable code
using our predefined templates. This change not only
provides a more robust and standardised mechanism
for template translation but also ensures validation of
the templates though the same XMML schemas as the
model files. Relationships defined with the XMML
schema provide further assurance on the validity of
model files by ensuring references to state changes and
message/agent, inputs and outputs refer to valid XML
elements defined in the same document.

In contrast with FLAMEs previous use of DTD
validation and use of the XParser our technique is
considerably more robust and extendible. The use of
standardised schema and translation languages lends
itself to the notion of an open specification system.
This also reduces dependency on external tools to
generate functional simulation code. It should be noted
that whilst our technique no longer relies on the
XParser our XSLT templates do not generate function
dependencies and function order must be explicitly
specified in the XMML description. The automatic
generation of function order is however possible using
XSLT and is left as future work.

4. Agent Behaviour Scripting

Agent behaviour is determined though the
definition of any number of agent functions within the
XMML model specification. Each function defined
requires a corresponding C code implementation. All
other aspects of simulation such as memory allocation,
importing of XML agent data and any pre/post
processing required before agent functions are
automatically generated by the extensive XSLT
templates. Within this code both agent and message
variables are stored within a Structure of Arrays (SoA)

rather than the more intuitive Array of Structures
(AoS). This allows a more efficient memory access
pattern (coalescing) for both reading and writing data
in global GPU memory [10]. Automatically generated
code also handles post processing of agent births and
deaths by using a parallel prefix sum algorithm [9].
This calculates a new index value for sparse data
which is scattered to the appropriate SoA list.

Each agent function is parameterised containing a
structure representing agent memory and a structure
for message input/output and agent output lists. The
agent structure represents a single agent instance and
its member variables are determined directly by the
content of the XMML model specification. An
additional RNG_rand48 structure can be used with a
random number function implementing the GNU
rand48 random number generator [21]. Figure 4
represents the skeleton structure of an agent function
taken from our later example. The use of
automatically generated message functions (red)
ensures message iteration performance is optimal
(described in Section 5). In addition to the message
fetching functions in the example, each message and
agent type has an additional function to add
messages/agents to an appropriate SoA list.

Figure 4 – An example of an agent function

showing message iteration

5. Agent Communication

Whilst it would be possible for agents to process
message lists within the agent function through simple
iteration. This technique fails to exploit the maximum
performance from GPU hardware. We have provided
two efficient techniques for message iteration. The

__FLAME_GPU_FUNC__ int differentiate(
 xmachine_memory_keratinocyte* xmemory,
 xmachine_message_location_list* location_messages)
{
 /* Get the first message */
 xmachine_message_location* location_message =
 get_first_location_message(location_messages,
 partition_matrix,
 x1, y1, z1);
 /* Repeat untill there are no more messages */
 while(location_message)
 {
 /* Process the message */

 /* Get the next message */
 location_message =
 get_next_location_message(location_message,
 location_messages,
 partition_matrix);
 }

 /* Update xmemory variables */

 return 0;
}

first utilises per multiprocessor shared memory to
improve the performance of brute force message
processing. The second technique uses spatial
partitioning to reduce the number of messages
processed per agent depending on a pre specified
message range and spatial boundary.

5.1. Brute Force Message Communication

In order to process messages using the brute force
technique, a tiling method inspired by Nyland et al.
[13] utilises shared memory by serialising message
access across threads. Technically this requires that
messages are split into groups with the first message
group being loaded into shared memory by the
get_first_message() function (Figure 5).
Following this each thread within the same thread
block sequentially reads messages from shared
memory using the get_next_message() function.
After each thread has exhausted the messages within
the group (or tile) the get_next_message()
function synchronises threads in the block and loads
the next group of messages into shared memory
(Figure 6).

Figure 5 - Message group loading when
requesting the first and next message.

Figure 6 - Message group loading when
requesting the next message from the
beginning of a new message group.

Message group size and thread block size are equal

so individual threads are responsible for loading
shared memory values concurrently. A thread

synchronisation is performed after loading any data
into shared memory and ensures that all messages are
available to all threads within the block. To avoid all
thread blocks reading the same groups, the first group
load of any block (issued by the
get_first_message() function) starts by
loading data into shared memory at offset locations in
global memory. Thread blocks beginning mid way
through the message list load each message group
sequentially from their starting group before
circulating back to the first. The
get_next_message() function then returns false
after the same number of messages across the entire
agent population have been processed.

As agent and hence message list sizes are liable to
change through out the simulation process, it is
important to consider thread path divergence to avoid
any deadlock problems. Unused threads are likely and
are a result of the total number of agents not being a
multiple of the thread block size. Rather than leave
these threads idle it is essential for this messaging
iterating technique that they follow the same path as
occupied threads within the block. Whilst this results
in agent data beyond the last agent in the list being
processed with the agent function, the path these
threads follows ensures that full message groups are
loaded into shared memory. Likewise it is vitally
important that there are no conditional dependencies
on message iteration or breaks from the message loop.
If any agent becomes excluded from the message loop
the agents thread will fail to load shared message data
(causing a thread synchronisation deadlock in the
get_next_message() function) and will result in
the simulation ending.

5.2. Limited Range Message Communication

In cellular tissue modelling brute force message
communication is highly inefficient as cells interact
only within a limited interaction radius. In order to
reduce the O(n²) processing a spatial partitioning
technique [7, 1] has been adopted which we have
previously demonstrated with swarm modelling [16].
The agent environment is split into cellular partitions
(often referred to as buckets) and the message list is
sorted depending on the cellular position of each
message [7]. A cellular boundary matrix which
contains the index of the first and last message per cell
is then determined using scattered writes. As each
cellular dimension is equal to the message range this
guarantees that processing of each message within the
27 neighbouring cells of an agent (including its own)

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3

Group 1 Group 2 Group 3 Group 4
Message List

(DRAM)

Shared
Memory

Thread
Block

Grid Block

get_next_message() with
load next message group
get_next_message()

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3

Group 1 Group 2 Group 3 Group 4
Message List

(DRAM)

Shared
Memory

Thread
Block

Grid Block

get_first_message()

get_next_message()

will include all messages within the message radius.
Figure 7 shows the pseudocode algorithm which given
an existing message returns the next message from the
neighbouring cellular partitions. More specifically it
loops through the neighbouring cells looking for a cell
which contains messages (line 21). When a cell
containing messages is found or if there are more
messages in the previous messages cell (line 10) then
a message is returned. The variable
relative_cell holds a vector of integers in the
range -1≤x≥1 which identifies the relative position of
the current message to the agent_grid_cell. The
function nextCell therefore determines if relative
position can be incremented (i.e. when all 27 unique
values have been exhausted the function returns false).

Figure 7 - Pseudocode algorithm for spatial

message loading

The function cellPosition calculates the

cellular position of a continuous valued point within
the message partition space. In the case that the point
lies outside of the partition bounds (specified in the
GPU XMML model file) the position is wrapped. The
function hashCellPosition performs a hash
function mapping the cell identifier to a unique
integer [11]. It should be noted that the algorithm does
not perform an additional radial check on messages
and roughly 1/3 of the messages returned will be
outside the message range of the agent. It is therefore
important that messages are filtered using a distance

check within the agent function as they would be when
using the brute force technique.

6. Non Linear Time Modelling

As with their formal definition, X-Machine agent
functions have a start state and end state as well as a
possible function condition. Function conditions allow
agents to take different paths through a single iteration
step by allowing multiple functions from a single state.
As agents are stored and processed according to their
state it is important that function conditions split
agents into two working lists to avoid divergence
during function execution. For each agent function
this is implemented by using a filter kernel which
maps agents meeting the function condition to a
working list. Both the sparse working list and list of
agents remaining in the start state list are then
compacted using the same prefix sum technique used
for birth and death allocation. After the working agent
list is processed by the agent function the agents are
finally appended to the end state list.

In the case of force resolution standard agent
conditions do not provide enough flexibility to ensure
agents are able to reach a stable state. Force resolution
requires a minimum of two agent functions. The first
of these is required to output a positional message and
the second to process neighbours positions and update
the agent’s position. With a cellular model it is highly
unlikely that a single resolution step (output and
update) will result in a stable state. Previously,
multiple force resolution steps have been used.
however careful scrutiny has suggested that to ensure
a stable condition has been met a large amount of
resolution steps are required. Using multiple
resolution steps also has the problem of introducing a
large amount of code repetition as each resolution step
requires a separate agent function.

Our force resolution technique uses a recursive
method to perform any number of force resolution
steps. As recursive behaviour can not be achieved
through agent function dependencies and conditions,
it is instead achieved by removing the constraint that a
single simulation step represents a single fixed length
of time. Technically this implies that each simulation
step may follow either a regular path through each
agent function or if the population is unresolved
perform only a force resolution step. In order for this
to be possible a global function condition is required.
Rather than filtering agents into separate states and
paths through the simulation, a global condition
ensures that all agents follow the same path, providing

1. IF first message THEN
2. SET relative_cell TO null
3. SET cell_index TO 0
4. SET cell_index_max TO 0
5. CALL cellPosition WITH agent position
6. RETURN agent_grid_cell
7. ENDIF
8. SET move_cell TO true
9. INCREMENT cell_index
10. IF (cell_index < cell_index_max) THEN
11. SET move_cell TO false
12. ENDIF
13. WHILE(move_cell)
14. IF(CALL nextCell WITH relative_cell RETURN bool) THEN
15. INCREMENT next_cell
16. SET next_cell TO agent_grid_cell + relative_cell
17. CALL hashCellPosition WITH next_cell
18. RETURN next_cell_hash
19. SET cell_index_min
20. TO cell_start_boundaries[next_cell_hash]
21. IF (cell_index_min != null) THEN
22. SET cell_index_max
23. TO cell_end_boundaries[next_cell_hash]
24. SET cell_index TO cell_index_min
25. SET move_cell TO false
26. ENDIF
27. ELSE
28. RETURN NULL
29. ENDIF
30. ENDWHILE
31. RETURN message from message list AT cell_index

every agent meets the condition (Figure 8). In the case
of inter cellular force resolution this global condition
can simply be a check to ensure agents have moved
less than some small amount. If all agents meet this
condition it suggests that the physical forces between
them have reached a stable physical state with a
minimal probability of overlaps. Using this technique
has the added benefit of avoiding unnecessary
resolution steps which occurs when a large fixed
number is instead used. As there is a possibility that a
physical model may reach an oscillating physical state,
global conditions have an optional fixed number of
times that the condition can produce the same global
result. This effectively allows a large upper bound to
be placed on the number of force resolution steps
which can be performed between normal simulation
iterations.

Figure 8 – Non linear simulation showing

separate force resolution path

7. Agent Visualisation

In addition to improving the performance of
simulation, modelling on the GPU provides the
obvious benefit of maintaining agent information
directly where it is required for visualisation.
Alternatively CPU simulations incur a large
performance cost when transferring large amounts of
data to the GPU which significantly effects the
population sizes which can be viewed in real time. In
the case of FLAME this is further hindered by the fact
that each simulation step must be read from the hard

disk which creates a significant bottleneck even when
using compressed binary data storage (rather than
XML).

As agent data is stored in CUDA global memory
the first step to rendering is to make this data
available in the rendering pipeline. This can be
achieved through the use of OpenGL Buffer Objects.
The most simplistic method is to use a kernel (per
agent type) to pass agents positional data into a Vertex
Buffer Object (VBO) mapped into CUDA as a float
array. This VBO can then be rendered with a single
draw call rendering the positions as either OpenGL
points or axis aligned point sprites which can give the
appearance of more complex geometry. As an
alternative to this we have used a more complex
technique of mapping agent positions to texture data
which in turn is used to displace sets of vertices which
specify 3D geometry, see figure 9.

Figure 9 - Keratinocyte Model at iteration 0

and 1500 rendered as spheres. Red spheres
represent stem cells, green represent TA
cells, blue represent committed cells and

yellow represents corneocyte cells.

…
agent functions
…

unresolved
final_agent_function()

output_position()

move_and_store_overlap()

resolved

resolved

first_agent_function()
condition(no overlap)

unresolved

unresolved

condition(is overlap)

This is achieved through using a CUDA kernel to

pass agent data to a Texture Buffer Object (TBO) and
rendering all vertices of a model with a vertex
attribute which corresponds to the agent’s position in
the TBO texture data. The vertex shader uses this
attribute to determine which agent position is used to
offset the vertex, with a further fragment shader used
to perform per pixel lighting. As it is possible to store
model data within a VBO, rendering a population of
agents is achieved by setting a unique vertex attribute
and drawing the vertex data once per agent.
Alternatively for simple agent models (few vertices) a
large VBO containing a model instance for each agent
can be used with an accompanying VBO holding a
vertex attribute array. In this case the entire
population can be drawn using a single draw call. This
is obviously unsuitable for complex agent models due
to the exponential scale of the vertex/attribute data
sets. The advantage of either of these instancing based
methods are that arbitrary models can be used (of
greater complexity than can be represented by point
spites) whilst maintaining significantly high
performance by minimising draw calls and GPU data
transfer.

8. Performance Results

In order to evaluate our work we have
implemented a modified version of the Keratinocyte
colony model [19]. Whilst the functionality of this
model remains the same as described by Sun, the
model has been modified to limit agent functions to
only a single message input and output (according to
our XMML specification). All agent functions have
also been rewritten to avoid any conditional
dependency on message iteration or breaking from the
message loops. Our modified version of the
Keratinocyte model consists of a single agent, two
message types, a single initialisation function and
seven agent functions which include multiple birth
and death allocations.

All results were obtained on a single PC with an
AMD Athlon 2.51 GHz Dual Core Processor with
3GB of RAM and a GeForce 9800 GX2. Whilst the
GX2 card consists of two independent GPU cores only
a single core has been used for CUDA processing with
the other handling the active display. This technique
allows the circumvention of the windows watchdog
timer which halts GPU kernels exceeding five seconds
in execution time. Original FLAME models have been
updated to match our FLAME GPU function code as

closely as possible and have been compiled using GCC
with MingGW using full compiler optimisations.

100

1000

10000

100000

1024 2048 4096 8192 16384 32768 65536 131072
Population Size

Brute Force Algorithm Speedup Spatial Partitioned Algorithm Speedup

Figure 10 – Relative performance of the
Keratinocyte model (logarithmic scale)

Figure 10 demonstrates the relative speedup of the

Keratinocyte model achieved using the two message
communication techniques. Each measurement
consists of an initial configuration state consisting of
stem cells randomly distributed stem cells at a
constant density. The speedup is calculated by
considering the relative speed increase of the FLAME
GPU iteration time in comparison with FLAMEs CPU
iteration time. As the FLAME message processing for
uses an O(n²) algorithm the result of our brute force
algorithm gives the best direct comparison. The
exponential speedup of the spatially partitioned
message communication is not surprising and would
be better suited to comparison with a grid based
implementation. Unfortunately as FLAME is unable to
perform force resolution no such data exists. Likewise
the measurements in this experiment are performance
orientated and use only a single resolution step to give
an indication of processing time. Even with this
simplification the final simulation run of 131072
agents took almost 8 hours to complete on the CPU.
With brute force messaging on the GPU the
simulation time is reduced to just less than two
minutes whilst our spatially partitioned alternative
took little over a second.

In order to evaluate a more realistic scenario than
randomly distributed agents, we have measured the
performance over an entire simulation using an initial
configuration representing a scratch wound (300µm
wide). Force resolution was done by testing agent’s
movement to ensure they had moved less than 0.25
µm with a maximum of 200 resolution steps. Figure
11 shows the performance of this simulation which
took roughly 1500 iterations (not including force
resolution iterations) to reach a stable state (shown in

Figure 9). The timing of the force resolution step is
shown separately from the timing of regular agent
behaviour and is measured in centiseconds (10-2) for
clarity. Whilst it is possible to visualise only the linear
time steps at 2-3 Frames per Second (FPS) inclusion
of the force resolution steps ensures simulation
remains interactive at over 60FPS throughout.

The erratic performance of force resolution is
explained by the random movement of agents and the
varying resolution steps required reaching a stable
state. The slight trend towards increased performance
of force resolution throughout the simulation is
attributed to the reduced number of cell divisions.
Fewer new agents require less force resolution steps as
fewer agents within the densely packed population
need to move in order to accommodate them.

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

Itteration Step Timing Brute Force (ms) Itteration Step Timing Partitioned (ms)
Force Resolution Step Partitioned (cs)

Itteration Number
Figure 11 – Timing of simulation and force

resolution steps during scratch would
simulation

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
0

8

16

24

32

40

48
Population Size Potential Idle Blocks per Itteration

Itteration Number
Figure 12 – Population size and potential idle
blocks with respect to the iteration number

In order to explain the significant performance

drop of the brute force simulation timing visible

around iteration 600 it is important to consider the
agent count (shown on the left axis of Figure 12). At
iteration 600 the agent count goes beyond 2048. The
reason this number is significant is that at this agent
count the number of blocks (32) is equally split
amongst the multiprocessors which restricted by
register use are able to hold 2 blocks each. For agent
counts above 2048 and below the next optimal agent
population size of 4096 there are an uneven number of
blocks to distribute per multiprocessors. The result of
this uneven number is that once the first 2048 agent
have been processed the left over thread blocks must
be scheduled to multiprocessors leaving many of them
idle. In figure 12, potential idle blocks per iteration
(right axis) represents the number of potential block
spaces available on all 16 multi processors as a result
of the odd block number. This effect is not visible in
our previous results as population sizes are increased
by factors which provide equal mapping of blocks to
multiprocessors. The spatially partitioned
communication pattern does not suffer in the same
way

9. Conclusion

We have presented FLAME GPU, an extension to
the FLAME framework providing a flexible agent
based architecture entirely on the GPU. Formal agent
specification techniques have been used which are
suitable for general continuous valued agent based
systems. A technique for accurate force resolution has
been presented which is suitable for resolving forces in
cellular tissue models. This has been demonstrated
through the implementation of a Keratinocyte colony
model which has benefit from a direct 250x speedup
in contrast with FLAME and an exponential speedup
when more efficient spatially partitioned message
communication is exploited.

In contrast with similar work [5] we have
described the implementation of a flexible architecture
that addresses both reusability as well as performance.
As the trend towards faster GPU hardware continues
we expect the performance of our framework to
continue to improve. GT200 hardware already boasts
almost twice the GFLOP/s performance over the
hardware used within our evaluation. In contrast with
PC grids this allows a single hardware upgrade to
offer an enormous effect on simulation performance
for a relatively small cost.

The reduction in simulation time will allow us to
extend the variety and complexity of models in the
future. With respect to cellular tissue modelling this

will allow larger simulations as well as increasing the
complexity of physical cell representation. In addition
to this it is expected that the public release of this
framework will result in the implementation and
evaluation of more advanced models which will
provide feedback for further optimisations.

10. References

[1] Anderson, J., Lorenz, C. and Travesset, A. 2008.

General purpose molecular dynamics simulations fully
implemented on graphics processing units, Journal of
Computational Physics 227 (2008) 5342-5359

[2] Barnard, J., Whitworth, J., and Woodeard, M. 1996.
Communicating X-Machines. Journal of Information
and Software Technology, Vol 38. no. 6

[3] Chiara, R., Erra, U., Scarano, V. and Tatafiore, M.2004.
Massive Simulation using GPU of a distributed
behavioural model of a flock with obstacle avoidance.
In Proceedings of 9th International Fall Workshop
Vision, Modelling, And Visualization

[4] Coakley, S., Smallwood, R., and Holcombe, M. 2006.
Using {X}-Machines as a Formal Basis for Describing
Agents in Agent-Based Modelling, Proceedings of the
2006 Spring Simulation Multiconference, April 2006,
pages 33-40.

[5] D'Souza, R. M., Lysenko, M., and Rahmani, K. 2007.
SugarScape on steroids: simulating over a million
agents at interactive rates. Proceedings of Agent2007
conference. Chicago, IL

[6] Eilenberg, S. 1974. Automata, Languages and
Machines. volume A. Academic Press.

[7] Green, S. 2007. CUDA Particles, NVIDIA Whitepaper,
November 2007.

[8] Harris, M., Coobe, G., Scheuermann, T., and Lastra, A.
2002. Physically-Based Visual Simulation on Graphics
Hardware. In Procedings SIGGRAPH 2002 /
Eurographics Workshop on Graphics Hardware 2002.

[9] Harris, M., Sengupta, S., and Owens, J. 2007. Parallel
Prefix Sum (Scan) with CUDA. GPU Gems 3. Chapter
39.

[10] Howes, L. 2007. Loading Structured Data Efficiently
With CUDA. NVIDIA Technical Report.
http://developer.download.nvidia.com/compute/cuda/sd
k/website/projects/vectorLoads/doc/vectorLoads.pdf

[11] Kipfer, P., Segal, M., and Westermann, R. 2004.
UberFlow: a GPU-based particle engine. In
Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Conference on
Graphics Hardware. Grenoble, France, August 29 – 30

[12] NVIDIA Corporation. 2007. CUDA Programming
Guide Version 2.0,
http://www.nvidia.com/object/cuda_develop.html

[13] Nyland, L., Harris, M., and Prins, Jan. 2007. Fast N-
Body Simulation with CUDA, GPU Gems 3, Addison
Wesley Professional, Chapter 31

[14] Owens, J., Luebke, D., Govindaraju, N., Harris, M.,
Krüger, J., Lefohn, A., and Purcell, T. 2005. A Survey
of General-Purpose Computation on Graphics
Hardware. In Proceedings of Eurographics 2005, State
of the Art Reports, pages 21-51

[15] Richmond, P., Coakley, S. And Romano, D. 2009, A
High Performance Agent Based Modelling Framework
on Graphics Card Hardware with CUDA, Proc. of 8th
Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2009), May, 10–15, 2009, Budapest,
Hungary, in press.

[16] Richmond, P., and Romano, D. 2008. Agent Based
GPU, a Real-time 3D Simulation and Interactive
Visualisation Framework for Massive Agent Based
Modelling on the GPU. Proceedings of International
Workshop on Supervisualisation 2008. Kos Island,
Greece. June 2008.

[17] Rouff, C., Hinchey, M., Truszkowski, W., and Rash, J.
2005. Verifying large number of cooperating adaptive
agents. 11th International Conference on Parallel and
Distributed Systems. June 2005.

[18] Stone, J., Phillips, J., Freddolino, P., Hardy, D.,
Trabuco, L. and Schulten. K. 2007. Accelerating
molecular modeling applications with graphics
processors. Journal of Computational Chemistry.
28:2618-2640

[19] Sun, T., McMinn, P., Coakley, S., Holcombe, M.,
Smallwood, R., and MacNeil, S. 2006. Development
and validation of an agent-based computational model
of normal human keratinocytes organisation in vitro.
European Cells and Materials, Volume 11, Number 3.
Pages 28

[20] Van der Vlist, E. 2002. XML Schema. O’Riley Media
ISBN:0-596-00252-1. pages 197-223

[21] Van Meel, J., Arnold, A., Frenkel, D., Zwart, S. and
Belleman, R. 2008. Havesting graphics power for MD
simulations. Molecular Simulation, Volume 34, Issue
3, p259-266

[22] Walker, D., Hill, G., Wood, S., Smallwood, R. and
Southgate, J. 2004. Agent-based computational
modelling of wounded epithelial cell monolayers. IEEE
Trans Nanobioscience 3:153-163

