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Abstract 
 

Cellular level agent based modelling is currently 
reliant on either sequential processing environments 
or expensive and largely unavailable PC grids. The 
GPU offers an alternative architecture for such 
systems, however the steep learning curve associated 
with the data parallel architecture has previously 
limited the uptake of this emerging technology. This 
paper presents a template driven agent architecture 
(FLAME GPU) which provides a mapping of XML 
model specifications and C language scripting to 
optimised Compute Unified Device Architecture 
(CUDA) for the GPU. Our work has been validated 
though the implementation of a Keratinocyte model 
which uses limited range message communication with 
non linear time simulation steps to resolve inter 
cellular forces. The performance gain achieved over 
existing modelling techniques reduces simulation 
times from hours to seconds. Furthermore the 
improvement of simulation performance allows us to 
present a real time visualisation technique which was 
previously unobtainable. 
 
1.  Introduction 
 

Agent Based Modelling (ABM) is a powerful 
technique which is used to simulate group behaviour 
from a number of simple interacting rules between 
communicating autonomous agents. Within systems 
biology ABM offers an alternative to using higher 
level differential equations which fail to capture 
important lower level interactions. Such interactions 
are important to improving understanding of 
biological models as they result in the observable 
systems level emergent behaviour. An obvious 
consequence of this bottom up modelling technique is 
that simulating many individuals is computationally 
expensive especially considering the scale of models 
which are required to produce observable results.  

Traditional ABM toolkits such as Repast 1, Mason 2  
and Swarm3 are primarily aimed at a single CPU 
architecture, and whilst they offer simple agent 
specification techniques, their inherent lack of 
parallelism seriously affects the scalability of models. 
Alternatively frameworks exploiting parallelism [4] 
have concentrated on coarse task level parallelism 
targeted at processing clusters or grids. Whilst this 
technique offers the potential to improve simulation 
performance, such systems are expensive and 
unavailable for the majority of AB modellers. In 
addition to this, cellular models of tissue growth [22], 
including the Keratinocyte model [19] which we use to 
evaluate our own work, requires non parallel external 
tools to solve inter cellular forces between simulation 
steps. Whilst computationally expensive, physical 
force resolution is essential in maintaining a physical 
integrity. Without this stage critical biochemical 
reactions during cell contact are likely to produce 
abnormal tissue growth. 

The trend towards the use of emerging hardware 
architectures has been advantageous to many fields of 
biological and physical sciences [1, 18, 21]. The 
introduction of the Compute Unified Device 
Architecture (CUDA) has simplified the previously 
tedious process of mapping General Purpose 
computation on the GPU (GPGPU) [8, 14]. Despite 
this examples of ABM on the GPU are limited in 
quantity and are typically examples of specific models 
[3, 5, 16]. The most prominent of these includes the 
work of D’Souza [5] which implements a discrete 
Sugarscape model using a densely partitioned grid to 
hold agent data. Whilst efficient, the grid based 
implementation is however memory intensive and 
suitable only for fine grained 2D or coarse grained 3D 
environments.  

                                                        
1 http://repast.sourceforge.net/ 
2 http://cs.gmu.edu/~eclab/projects/mason/ 
3 http://www.swarm.org/ 



Although GPU programming has certainly become 
more accessible, achieving optimal performance still 
requires sound knowledge of the underlying hardware 
architecture. Flexibility is an aspect of ABM which is 
often overlooked specifically within GPU examples. 
As with other specific examples such as molecular 
dynamics [1, 18, 21], ABM requires tools for using the 
GPU which are not only efficient but concentrate on 
reusability and flexibility. The focus of this paper is 
therefore to describe a data parallel framework for the 
ABM on the GPU. Our work aims to overcome the 
limitations of previous techniques including our own 
previous work, [15, 16] to be suitable for parallel 
cellular tissue modelling. More specifically our work 
makes the following contributions. 

1. An ABM framework: FLAME GPU is presented, 
which uses formal agent specification techniques 
with model validation and a simple extension 
mechanism. 

2. A technique for non linear time step modelling is 
presented, which allows the implementation of 
parallel physical solvers required for tissue 
modelling. 

3. The performance of existing tissue models is 
massively accelerated reducing simulation time 
to the point that real time 3D visualisation of 
results is possible. 

 
2. A Review of GPU Hardware 
 

The speed of GPU hardware is attributed to the 
architectural design. Unlike more generic and flexible 
CPUs the GPUs architecture is task specific making it 
highly optimised for stream programming 
applications. Technically the GPU not only exceeds 
the transistor count of modern CPUs, but a 
significantly higher portion of transistors are available 
for data processing, rather than data caching and flow 
control [12]. In addition to this the GPUs memory 
bandwidth exceeds that of system memory bandwidth 
by roughly a factor of 10. Figure 1 demonstrates the 
computational power of the GPU in direct comparison 
with Intel processors. 

The class of GPU hardware targeted by the work in 
this paper is specifically limited to CUDA enabled 
graphics cards. Whilst it is desirable to support a 
wider range of GPUs the CUDA API allows access to 
a hardware functionality not supported by older 
generation cards and competing GPU manufactures. 
More specifically the availability of local (on chip) 
shared memory offers extremely fast parallel memory 
access operations for threads within the same 

multiprocessor. In addition to this local 
synchronisation provides thread cooperation allowing 
data caching through shared memory access. 

 
Figure 1. Peak Performance of NVIDIA GPU 

Hardware (Red) vs. Intel CPU Hardware (Blue). 
Data from [12] 

 
The GPU programming model is described in detail 

in the CUDA Programming Guide [12] where it is 
presented as a parallel coprocessor. The GPU device 
architecture is described as Single Program Multiple 
Data (SPMD) where the program, or kernel, is some 
function native to the device and operating on multiple 
parallel threads. In order to generalise CUDA to 
multiple hardware implementations (with varying 
parallel capabilities) the idea of a grid of thread blocks 
is used to group threads. Whilst there is no global 
communication between threads, threads within the 
same block are able to cooperate by sharing 
information through the use of fast on chip shared 
memory. For each kernel execution the CUDA API 
provides a template based mechanism for grid and 
block size specification. Each block is then optimally 
assigned to the underlying multiprocessor hardware 
for parallel evaluation. 

At a hardware level blocks are split into smaller 
units of 32 threads called warps. Blocks are then 
distributed amongst multiprocessors with the amount 
of blocks per multiprocessor limited by either the 
hardware specific maximum number of warps per 
multiprocessor or resource limited by the total register 
or shared memory usage per block. During execution 
on the multiprocessor, warps are processed a single 
instruction at a time which allows the multiprocessor 
to switch between warps which are ready for 
execution. This warp interleaving allows global 
memory access latency to be effectively hidden 
providing the multiprocessor can be kept busy with 
non latent arithmetic instructions. As each instruction 
across a warp is executed in parallel, any conditionals 
branches between threads must follow the same path 
to attain maximum performance. In the case of 
divergent branches (or warp serialisations) between 



threads, instructions must either be serialised or 
multiple paths evaluated by every thread.  
 
3. Agent Specification 
 

Formal agent based specification is important 
within agent based modelling as it allows a simple and 
intuitive way of defining agents and their associated 
behaviour. Rather than creating a new framework and 
rewriting existing models, our work extends the 
already established FLexible Agent Modelling 
Environment (FLAME) [4]. The choice to extend 
FLAME not only aids better collaboration and 
understanding, but provides a basis for formal 
validation and verification of code [17]. FLAME itself 
is not a modelling platform instead it uses templates to 
produce simulation code. Models are described using a 
XML specification language (XMML) based around a 
formal modelling extending Finite State Machines 
(FSMs) concept called the X-Machine [6]. More 
specifically, FLAME builds upon a smaller subclass of 
X-Machines known as Communication Stream X-
Machines (CSXMS) [2]. Due to their design targeted 
at streaming data, CSXMS are well suited for 
integration within parallel systems. Within FLAME 
agents are defined as a set of states with internal 
memory. A transition function determines an agent’s 
next state and performs internal memory updates. The 
communication between agents is handled through the 
use of messages. Rather than use a large 
communication matrix [2] this is instead implemented 
in FLAME by more flexible variable length Message 
Lists.  

One of the weaknesses of FLAME, resides within 
the main template system which maps XMML model 
specifications into compliable C code.  The problem 
with this technique is that when extensions are made 
to the XMML language the template parser (XParser) 
needs to be modified to handle the additional XML 
tags. As the FLAME project is continually under 
development and being extended by multiple research 
projects we have defined an extendable system using 
XML Schema. This parallels Object Oriented 
techniques by allowing extensions to XMML to play 
the role of subclasses from a base XMML definition 
[20]. Through XML validation, model files can be 
checked to ensure they contain syntactically correct 
XML including element structure and value types. The 
base XML class itself comprises of a modular design 
of globally defined Complex Types. Figure 2 shows 
the Schema definition for the base xagent element 

which is referenced within the non extendible 
xagents list element. 

 

 
Figure 2 – XMML Schema definition of the 

xagent element 
 
In this example an xagent can be extended 

though a new complex type which uses derivation by 
extension. Figure 3 shows an extract from our 
GPUXMML schema which imports the original 
XMML schema under the ‘xmml’ namespace. This 
allows redefinition of the xagent_type and 
xagent element. The use of substitution groups 
allows the new xagent definition to replace the 
original producing valid XML code when run though 
an XML valuator such as Xerces or the .NET validator 
in Visual Studio.  

 

 
Figure 3 – GPU XMML Schema extension of 

the xagent element 
Documents validating against our new XMML 

schema are intentionally very similar to original 
FLAME XML models. This enables a simpler 
migration of old models to our newer syntax. The 

<complexType name="xagent_type"> 
  <complexContent> 
    <extension base="xmml:xagent_type"> 
      <sequence> 
        <element name="type"                                       
                 type="xagent_type_options" /> 
        <element name="bufferSize"  
                 type="int" /> 
      </sequence> 
    </extension> 
  </complexContent> 
</complexType> 
 
<element substitutionGroup="xmml:xagent"  
         name="xagent"  
         type="xagent_type" /> 

<complexType name="xagent_type"> 
  <sequence> 
    <element name="name"  
             type="string"  
             maxOccurs="1" minOccurs="1" /> 
    <element name="description"  
             type="string"  
             maxOccurs="1" minOccurs="0" /> 
    <element minOccurs="1" maxOccurs="1" 
             ref="memory" /> 
    <element maxOccurs="1" minOccurs="1" 
             ref="functions"/> 
    <element maxOccurs="1" minOccurs="1"  
             ref="states" /> 
  </sequence> 
</complexType> 
 
<element name="xagent" type="xagent_type"> 
</element> 
 
<element name="xagents"> 
  <complexType> 
    <sequence> 
      <element maxOccurs="unbounded" minOccurs="1" 
               ref="xagent" /> 
    </sequence> 
  </complexType> 
</element> 



majority of minor changes are a result of 
parameterisation of agent functions which were 
previously not required in task parallel code. Both 
message and agent, inputs and outputs, must now be 
explicitly specified within XMML. In order to 
maintain high performance, GPU memory is pre 
allocated and as a result messages and agents require a 
buffer size representing an upper bound on their 
population size. The full XMML and GPUXMML 
definition files are available online at 
http://www.dcs.shef.ac.uk/~paul/FLAMEGPU. 

To avoid the problems inherent with the XParser 
we have defined our code templates using Extensile 
Stylesheet Language Translations (XSLT). This 
removes the dependency on a specific template parser 
as any XSLT (version 1.0) compliant processor can 
convert an XMML model file to compliable code 
using our predefined templates. This change not only 
provides a more robust and standardised mechanism 
for template translation but also ensures validation of 
the templates though the same XMML schemas as the 
model files. Relationships defined with the XMML 
schema provide further assurance on the validity of 
model files by ensuring references to state changes and 
message/agent, inputs and outputs refer to valid XML 
elements defined in the same document. 

In contrast with FLAMEs previous use of DTD 
validation and use of the XParser our technique is 
considerably more robust and extendible. The use of 
standardised schema and translation languages lends 
itself to the notion of an open specification system. 
This also reduces dependency on external tools to 
generate functional simulation code. It should be noted 
that whilst our technique no longer relies on the 
XParser our XSLT templates do not generate function 
dependencies and function order must be explicitly 
specified in the XMML description. The automatic 
generation of function order is however possible using 
XSLT and is left as future work. 
 
4. Agent Behaviour Scripting 
 

Agent behaviour is determined though the 
definition of any number of agent functions within the 
XMML model specification. Each function defined 
requires a corresponding C code implementation. All 
other aspects of simulation such as memory allocation, 
importing of XML agent data and any pre/post 
processing required before agent functions are 
automatically generated by the extensive XSLT 
templates. Within this code both agent and message 
variables are stored within a Structure of Arrays (SoA) 

rather than the more intuitive Array of Structures 
(AoS). This allows a more efficient memory access 
pattern (coalescing) for both reading and writing data 
in global GPU memory [10]. Automatically generated 
code also handles post processing of agent births and 
deaths by using a parallel prefix sum algorithm [9]. 
This calculates a new index value for sparse data 
which is scattered to the appropriate SoA list. 

Each agent function is parameterised containing a 
structure representing agent memory and a structure 
for message input/output and agent output lists. The 
agent structure represents a single agent instance and 
its member variables are determined directly by the 
content of the XMML model specification. An 
additional RNG_rand48 structure can be used with a 
random number function implementing the GNU 
rand48 random number generator [21]. Figure 4 
represents the skeleton structure of an agent function 
taken from our later example. The use of 
automatically generated message functions (red) 
ensures message iteration performance is optimal 
(described in Section 5). In addition to the message 
fetching functions in the example, each message and 
agent type has an additional function to add 
messages/agents to an appropriate SoA list.  

 

 
Figure 4 – An example of an agent function 

showing message iteration 
 

5. Agent Communication 
 

Whilst it would be possible for agents to process 
message lists within the agent function through simple 
iteration. This technique fails to exploit the maximum 
performance from GPU hardware. We have provided 
two efficient techniques for message iteration. The 

__FLAME_GPU_FUNC__ int differentiate( 
  xmachine_memory_keratinocyte* xmemory,  
  xmachine_message_location_list* location_messages)  
{ 
  /* Get the first message */ 
  xmachine_message_location* location_message =          
    get_first_location_message(location_messages,  
                               partition_matrix,  
                               x1, y1, z1); 
  /* Repeat untill there are no more messages */ 
  while(location_message) 
  { 
    /* Process the message */ 
 
    /* Get the next message */ 
    location_message =   
      get_next_location_message(location_message,   
                                location_messages, 
                                partition_matrix); 
  } 
 
  /* Update xmemory variables */ 
 
  return 0; 
} 



first utilises per multiprocessor shared memory to 
improve the performance of brute force message 
processing. The second technique uses spatial 
partitioning to reduce the number of messages 
processed per agent depending on a pre specified 
message range and spatial boundary. 

 
5.1. Brute Force Message Communication 
 

In order to process messages using the brute force 
technique, a tiling method inspired by Nyland et al. 
[13] utilises shared memory by serialising message 
access across threads. Technically this requires that 
messages are split into groups with the first message 
group being loaded into shared memory by the 
get_first_message() function (Figure 5). 
Following this each thread within the same thread 
block sequentially reads messages from shared 
memory using the get_next_message() function.  
After each thread has exhausted the messages within 
the group (or tile) the get_next_message() 
function synchronises threads in the block and loads 
the next group of messages into shared memory 
(Figure 6). 

 

 
Figure 5 - Message group loading when 
requesting the first and next message.  

 
Figure 6 - Message group loading when 
requesting the next message from the 
beginning of a new message group. 

 
Message group size and thread block size are equal 

so individual threads are responsible for loading 
shared memory values concurrently. A thread 

synchronisation is performed after loading any data 
into shared memory and ensures that all messages are 
available to all threads within the block.   To avoid all 
thread blocks reading the same groups, the first group 
load of any block (issued by the 
get_first_message() function) starts by 
loading data into shared memory at offset locations in 
global memory. Thread blocks beginning mid way 
through the message list load each message group 
sequentially from their starting group before 
circulating back to the first. The 
get_next_message() function then returns false 
after the same number of messages across the entire 
agent population have been processed. 

As agent and hence message list sizes are liable to 
change through out the simulation process, it is 
important to consider thread path divergence to avoid 
any deadlock problems. Unused threads are likely and 
are a result of the total number of agents not being a 
multiple of the thread block size. Rather than leave 
these threads idle it is essential for this messaging 
iterating technique that they follow the same path as 
occupied threads within the block. Whilst this results 
in agent data beyond the last agent in the list being 
processed with the agent function, the path these 
threads follows ensures that full message groups are 
loaded into shared memory. Likewise it is vitally 
important that there are no conditional dependencies 
on message iteration or breaks from the message loop. 
If any agent becomes excluded from the message loop 
the agents thread will fail to load shared message data 
(causing a thread synchronisation deadlock in the 
get_next_message() function) and will result in 
the simulation ending. 
 
5.2. Limited Range Message Communication 
 

In cellular tissue modelling brute force message 
communication is highly inefficient as cells interact 
only within a limited interaction radius. In order to 
reduce the O(n²) processing a spatial partitioning  
technique [7, 1] has been adopted which we have 
previously demonstrated with swarm modelling [16]. 
The agent environment is split into cellular partitions 
(often referred to as buckets) and the message list is 
sorted depending on the cellular position of each 
message [7]. A cellular boundary matrix which 
contains the index of the first and last message per cell 
is then determined using scattered writes. As each 
cellular dimension is equal to the message range this 
guarantees that processing of each message within the 
27 neighbouring cells of an agent (including its own) 
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will include all messages within the message radius. 
Figure 7 shows the pseudocode algorithm which given 
an existing message returns the next message from the 
neighbouring cellular partitions. More specifically it 
loops through the neighbouring cells looking for a cell 
which contains messages (line 21). When a cell 
containing messages is found or if there are more 
messages in the previous messages cell (line 10) then 
a message is returned. The variable 
relative_cell holds a vector of integers in the 
range -1≤x≥1 which identifies the relative position of 
the current message to the agent_grid_cell. The 
function nextCell therefore determines if relative 
position can be incremented (i.e. when all 27 unique 
values have been exhausted the function returns false). 

 

 
Figure 7 - Pseudocode algorithm for spatial 

message loading 
 
The function cellPosition calculates the 

cellular position of a continuous valued point within 
the message partition space. In the case that the point 
lies outside of the partition bounds (specified in the 
GPU XMML model file) the position is wrapped. The 
function hashCellPosition performs a hash 
function mapping the cell identifier to a unique 
integer [11]. It should be noted that the algorithm does 
not perform an additional radial check on messages 
and roughly 1/3 of the messages returned will be 
outside the message range of the agent. It is therefore 
important that messages are filtered using a distance 

check within the agent function as they would be when 
using the brute force technique.     

 
6. Non Linear Time Modelling 
 

As with their formal definition, X-Machine agent 
functions have a start state and end state as well as a 
possible function condition. Function conditions allow 
agents to take different paths through a single iteration 
step by allowing multiple functions from a single state. 
As agents are stored and processed according to their 
state it is important that function conditions split 
agents into two working lists to avoid divergence 
during function execution. For each agent function 
this is implemented by using a filter kernel which 
maps agents meeting the function condition to a 
working list. Both the sparse working list and list of 
agents remaining in the start state list are then 
compacted using the same prefix sum technique used 
for birth and death allocation. After the working agent 
list is processed by the agent function the agents are 
finally appended to the end state list.  

In the case of force resolution standard agent 
conditions do not provide enough flexibility to ensure 
agents are able to reach a stable state. Force resolution 
requires a minimum of two agent functions. The first 
of these is required to output a positional message and 
the second to process neighbours positions and update 
the agent’s position. With a cellular model it is highly 
unlikely that a single resolution step (output and 
update) will result in a stable state. Previously, 
multiple force resolution steps have been used. 
however careful scrutiny has suggested that to ensure 
a stable condition has been met a large amount of 
resolution steps are required. Using multiple 
resolution steps also has the problem of introducing a 
large amount of code repetition as each resolution step 
requires a separate agent function.  

Our force resolution technique uses a recursive 
method to perform any number of force resolution 
steps. As recursive behaviour can not be achieved 
through agent function dependencies and conditions, 
it is instead achieved by removing the constraint that a 
single simulation step represents a single fixed length 
of time. Technically this implies that each simulation 
step may follow either a regular path through each 
agent function or if the population is unresolved 
perform only a force resolution step. In order for this 
to be possible a global function condition is required. 
Rather than filtering agents into separate states and 
paths through the simulation, a global condition 
ensures that all agents follow the same path, providing 

1.  IF first message THEN 
2.    SET relative_cell TO null 
3.    SET cell_index TO 0 
4.    SET cell_index_max TO 0 
5.    CALL cellPosition WITH agent position  
6.         RETURN agent_grid_cell 
7.  ENDIF 
8.  SET move_cell TO true 
9.  INCREMENT cell_index 
10. IF (cell_index < cell_index_max) THEN 
11.   SET move_cell TO false 
12. ENDIF 
13. WHILE(move_cell) 
14.   IF(CALL nextCell WITH relative_cell RETURN bool) THEN 
15.     INCREMENT next_cell 
16.     SET next_cell TO agent_grid_cell + relative_cell 
17.     CALL hashCellPosition WITH next_cell  
18.          RETURN next_cell_hash 
19.     SET cell_index_min  
20.         TO cell_start_boundaries[next_cell_hash] 
21.     IF (cell_index_min != null) THEN 
22.       SET cell_index_max  
23.           TO cell_end_boundaries[next_cell_hash] 
24.       SET cell_index TO cell_index_min 
25.       SET move_cell TO false 
26.     ENDIF 
27.   ELSE 
28.     RETURN NULL 
29.   ENDIF 
30. ENDWHILE 
31. RETURN message from message list AT cell_index 
 



every agent meets the condition (Figure 8). In the case 
of inter cellular force resolution this global condition 
can simply be a check to ensure agents have moved 
less than some small amount. If all agents meet this 
condition it suggests that the physical forces between 
them have reached a stable physical state with a 
minimal probability of overlaps.  Using this technique 
has the added benefit of avoiding unnecessary 
resolution steps which occurs when a large fixed 
number is instead used. As there is a possibility that a 
physical model may reach an oscillating physical state, 
global conditions have an optional fixed number of 
times that the condition can produce the same global 
result. This effectively allows a large upper bound to 
be placed on the number of force resolution steps 
which can be performed between normal simulation 
iterations.  

 
Figure 8 – Non linear simulation showing 

separate force resolution path 
 
7. Agent Visualisation 
 

In addition to improving the performance of 
simulation, modelling on the GPU provides the 
obvious benefit of maintaining agent information 
directly where it is required for visualisation. 
Alternatively CPU simulations incur a large 
performance cost when transferring large amounts of 
data to the GPU which significantly effects the 
population sizes which can be viewed in real time. In 
the case of FLAME this is further hindered by the fact 
that each simulation step must be read from the hard 

disk which creates a significant bottleneck even when 
using compressed binary data storage (rather than 
XML). 

As agent data is stored in CUDA global memory 
the first step to rendering is to make this data 
available in the rendering pipeline. This can be 
achieved through the use of OpenGL Buffer Objects. 
The most simplistic method is to use a kernel (per 
agent type) to pass agents positional data into a Vertex 
Buffer Object (VBO) mapped into CUDA as a float 
array. This VBO can then be rendered with a single 
draw call rendering the positions as either OpenGL 
points or axis aligned point sprites which can give the 
appearance of more complex geometry. As an 
alternative to this we have used a more complex 
technique of mapping agent positions to texture data 
which in turn is used to displace sets of vertices which 
specify 3D geometry, see figure 9. 

 
Figure 9 - Keratinocyte Model at iteration 0 

and 1500 rendered as spheres. Red spheres 
represent stem cells, green represent TA 
cells, blue represent committed cells and 

yellow represents corneocyte cells. 
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This is achieved through using a CUDA kernel to 

pass agent data to a Texture Buffer Object (TBO) and 
rendering all vertices of a model with a vertex 
attribute which corresponds to the agent’s position in 
the TBO texture data. The vertex shader uses this 
attribute to determine which agent position is used to 
offset the vertex, with a further fragment shader used 
to perform per pixel lighting. As it is possible to store 
model data within a VBO, rendering a population of 
agents is achieved by setting a unique vertex attribute 
and drawing the vertex data once per agent. 
Alternatively for simple agent models (few vertices) a 
large VBO containing a model instance for each agent 
can be used with an accompanying VBO holding a 
vertex attribute array. In this case the entire 
population can be drawn using a single draw call. This 
is obviously unsuitable for complex agent models due 
to the exponential scale of the vertex/attribute data 
sets. The advantage of either of these instancing based 
methods are that arbitrary models can be used (of 
greater complexity than can be represented by point 
spites) whilst maintaining significantly high 
performance by minimising draw calls and GPU data 
transfer.  
 
8. Performance Results 
 

In order to evaluate our work we have 
implemented a modified version of the Keratinocyte 
colony model [19]. Whilst the functionality of this 
model remains the same as described by Sun, the 
model has been modified to limit agent functions to 
only a single message input and output (according to 
our XMML specification). All agent functions have 
also been rewritten to avoid any conditional 
dependency on message iteration or breaking from the 
message loops. Our modified version of the 
Keratinocyte model consists of a single agent, two 
message types, a single initialisation function and 
seven agent functions which include multiple birth 
and death allocations.  

All results were obtained on a single PC with an 
AMD Athlon 2.51 GHz Dual Core Processor with 
3GB of RAM and a GeForce 9800 GX2. Whilst the 
GX2 card consists of two independent GPU cores only 
a single core has been used for CUDA processing with 
the other handling the active display. This technique 
allows the circumvention of the windows watchdog 
timer which halts GPU kernels exceeding five seconds 
in execution time. Original FLAME models have been 
updated to match our FLAME GPU function code as 

closely as possible and have been compiled using GCC 
with MingGW using full compiler optimisations. 
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Figure 10 – Relative performance of the 
Keratinocyte model (logarithmic scale) 

 
Figure 10 demonstrates the relative speedup of the 

Keratinocyte model achieved using the two message 
communication techniques. Each measurement 
consists of an initial configuration state consisting of 
stem cells randomly distributed stem cells at a 
constant density. The speedup is calculated by 
considering the relative speed increase of the FLAME 
GPU iteration time in comparison with FLAMEs CPU 
iteration time. As the FLAME message processing for 
uses an O(n²) algorithm the result of our brute force 
algorithm gives the best direct comparison. The 
exponential speedup of the spatially partitioned 
message communication is not surprising and would 
be better suited to comparison with a grid based 
implementation. Unfortunately as FLAME is unable to 
perform force resolution no such data exists. Likewise 
the measurements in this experiment are performance 
orientated and use only a single resolution step to give 
an indication of processing time. Even with this 
simplification the final simulation run of 131072 
agents took almost 8 hours to complete on the CPU. 
With brute force messaging on the GPU the 
simulation time is reduced to just less than two 
minutes whilst our spatially partitioned alternative 
took little over a second. 

In order to evaluate a more realistic scenario than 
randomly distributed agents, we have measured the 
performance over an entire simulation using an initial 
configuration representing a scratch wound (300µm 
wide). Force resolution was done by testing agent’s 
movement to ensure they had moved less than 0.25 
µm with a maximum of 200 resolution steps. Figure 
11 shows the performance of this simulation which 
took roughly 1500 iterations (not including force 
resolution iterations) to reach a stable state (shown in 



Figure 9). The timing of the force resolution step is 
shown separately from the timing of regular agent 
behaviour and is measured in centiseconds (10-2) for 
clarity. Whilst it is possible to visualise only the linear 
time steps at 2-3 Frames per Second (FPS) inclusion 
of the force resolution steps ensures simulation 
remains interactive at over 60FPS throughout.   

The erratic performance of force resolution is 
explained by the random movement of agents and the 
varying resolution steps required reaching a stable 
state. The slight trend towards increased performance 
of force resolution throughout the simulation is 
attributed to the reduced number of cell divisions. 
Fewer new agents require less force resolution steps as 
fewer agents within the densely packed population 
need to move in order to accommodate them.   

 
 

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

Itteration Step Timing Brute Force (ms) Itteration Step Timing Partitioned (ms)
Force Resolution Step Partitioned (cs)

Itteration Number  
Figure 11 – Timing of simulation and force 

resolution steps during scratch would 
simulation 

 
 

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
0

8

16

24

32

40

48
Population Size Potential Idle Blocks per Itteration

Itteration Number  
Figure 12 – Population size and potential idle 
blocks with respect to the iteration number 

 
In order to explain the significant performance 

drop of the brute force simulation timing visible 

around iteration 600 it is important to consider the 
agent count (shown on the left axis of Figure 12). At 
iteration 600 the agent count goes beyond 2048. The 
reason this number is significant is that at this agent 
count the number of blocks (32) is equally split 
amongst the multiprocessors which restricted by 
register use are able to hold 2 blocks each. For agent 
counts above 2048 and below the next optimal agent 
population size of 4096 there are an uneven number of 
blocks to distribute per multiprocessors. The result of 
this uneven number is that once the first 2048 agent 
have been processed the left over thread blocks must 
be scheduled to multiprocessors leaving many of them 
idle. In figure 12, potential idle blocks per iteration 
(right axis) represents the number of potential block 
spaces available on all 16 multi processors as a result 
of the odd block number. This effect is not visible in 
our previous results as population sizes are increased 
by factors which provide equal mapping of blocks to 
multiprocessors. The spatially partitioned 
communication pattern does not suffer in the same 
way   
 
9. Conclusion 
 

We have presented FLAME GPU, an extension to 
the FLAME framework providing a flexible agent 
based architecture entirely on the GPU. Formal agent 
specification techniques have been used which are 
suitable for general continuous valued agent based 
systems. A technique for accurate force resolution has 
been presented which is suitable for resolving forces in 
cellular tissue models. This has been demonstrated 
through the implementation of a Keratinocyte colony 
model which has benefit from a direct 250x speedup 
in contrast with FLAME and an exponential speedup 
when more efficient spatially partitioned message 
communication is exploited.   

In contrast with similar work [5] we have 
described the implementation of a flexible architecture 
that addresses both reusability as well as performance. 
As the trend towards faster GPU hardware continues 
we expect the performance of our framework to 
continue to improve. GT200 hardware already boasts 
almost twice the GFLOP/s performance over the 
hardware used within our evaluation. In contrast with 
PC grids this allows a single hardware upgrade to 
offer an enormous effect on simulation performance 
for a relatively small cost. 

The reduction in simulation time will allow us to 
extend the variety and complexity of models in the 
future. With respect to cellular tissue modelling this 



will allow larger simulations as well as increasing the 
complexity of physical cell representation. In addition 
to this it is expected that the public release of this 
framework will result in the implementation and 
evaluation of more advanced models which will 
provide feedback for further optimisations.  
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